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Summary 
Effective pandemic preparedness relies on anticipating viral mutations that are able to evade 
host immune responses in order to facilitate vaccine and therapeutic design. However, current 
strategies for viral evolution prediction are not available early in a pandemic – experimental 
approaches require host polyclonal antibodies to test against and existing computational 
methods draw heavily from current strain prevalence to make reliable predictions of variants of 
concern. To address this, we developed EVEscape, a generalizable, modular framework that 
combines fitness predictions from a deep learning model of historical sequences with 
biophysical structural information. EVEscape quantifies the viral escape potential of mutations at 
scale and has the advantage of being applicable before surveillance sequencing, experimental 
scans, or 3D structures of antibody complexes are available. We demonstrate that EVEscape, 
trained on sequences available prior to 2020, is as accurate as high-throughput experimental 
scans at anticipating pandemic variation for SARS-CoV-2 and is generalizable to other viruses 
including Influenza, HIV, and understudied viruses with pandemic potential such as Lassa and 
Nipah. We provide continually updated escape scores for all current strains of SARS-CoV-2 and 
predict likely additional mutations to forecast emerging strains as a tool for ongoing vaccine 
development (evescape.org). 
 
 
 
Introduction 
Viral diseases involve a complex interplay between immune detection in the host and viral 
evasion, often leading to the evolution of viral antigenic proteins. Antibody escape mutations 
affect viral reinfection rates and the duration of vaccine efficacy. Therefore, anticipating viral 
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variants that avoid immune detection with sufficient lead time is key to developing optimal 
vaccines and therapeutics.  
 
Ideally, we would be able to anticipate viral immune evasion by using experimental methods 
such as pseudovirus assays1,2 and higher-throughput deep mutational scans3–17 (DMSs) that 
measure the ability of viral variants to bind relevant antibodies. However, these experimental 
methods require antibodies or sera representative of the aggregate immune selection imposed 
on the virus, which only become available as large swaths of the population are infected or 
vaccinated, limiting the impact for early prediction of immune escape. In addition, since 
pandemic viruses can evolve rapidly (tens of thousands of new SARS-CoV-2 variants are 
currently sequenced each month), systematically testing all variants as they emerge is 
intractable, even without considering the effects of potential mutations on currently circulating 
strains.   
 
It is therefore of interest to build computational methods for predicting viral escape that can be 
used to identify mutations that may emerge. An ideal model would be able to assess escape 
likelihood for as-yet-unseen variation throughout the full antigenic protein, would inform the 
design of targeted experiments, would be updated with pandemic information, and would make 
predictions with sufficient lead time for vaccine development (that is, before immune responses 
to the virus are observed). However, previous computational methods for forecasting viral 
fitness or immune escape depend critically on real-time sequencing or pandemic antibody 
structures, limiting their ability to predict unseen variants and making them impractical for 
vaccine development during the onset of a pandemic18–22.  
 
In this work, we introduce EVEscape, a flexible framework that addresses the weaknesses of 
existing methods by combining a deep generative model trained on historical viral sequences 
with structural and biophysical constraints. Unlike existing methods, EVEscape does not rely on 
recent pandemic sequencing or antibodies, making it applicable both in the early stages of a 
viral outbreak and for ongoing evaluation of emerging SARS-CoV-2 strains. By leveraging 
functional constraints learned from past evolution, as successfully demonstrated for predicting 
clinical variant effects23–25, EVEscape can capture relevant epistasis26,27 and thereby predict 
mutant fitness within the context of any strain background. Moreover, EVEscape is adaptable to 
new viruses, as we demonstrate in both our validation on SARS-CoV-2, HIV, and Influenza and 
in predictions for the understudied Nipah and Lassa viruses. This approach enables advanced 
warning of concerning mutations, facilitating the development of more effective vaccines and 
therapeutics. Such an early warning system can guide public health decision-making and 
preparedness efforts, ultimately minimizing the human and economic impact of a pandemic. 
 
Results 
EVEscape combines deep learning models and biophysical constraints. 
Viral proteins that escape humoral immunity disrupt polyclonal antibody binding while retaining 
protein expression, protein folding, host receptor binding, and other properties necessary for viral 
infection and transmission9. We built a modeling framework—EVEscape—that incorporates 
constraints from these different aspects of viral protein function learned from different data 
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sources. We express the probability of a mutation to induce immune escape as the product of 
three probabilities; the likelihood that a mutation maintains viral fitness (‘fitness’ term), occurs in 
an antibody accessible region (‘accessibility’ term), and disrupts antibody binding (‘dissimilarity’ 
term) (Figure 1A). These components are amenable to pre-pandemic data sources, allowing for 
early warning (Figure 1B).  
 

 
Figure 1: Early prediction of antibody escape from deep generative sequence models, structural and 
biophysical constraints. EVEscape assesses the likelihood of a mutation to escape the immune response based on 
the probabilities of a given mutation to maintain viral fitness, to occur in an antibody epitope, and to disrupt antibody 
binding. It only requires information available early in a pandemic, before surveillance sequencing, antibody-antigen 
structures or experimental mutational scans are broadly available. 

 
Firstly, we estimate the fitness effect of substitution mutations (subsequently referred to as 
mutations) using EVE23, a deep variational autoencoder trained on evolutionarily-related protein 
sequences (Table S1-S2, Data S1) that learns constraints underpinning structure and function for 
a given protein family. Consequently, EVE considers dependencies across positions (epistasis), 
capturing the changing effects of mutations as the dominant strain backgrounds diversify from the 
initial sequence28–30. We showcase the efficacy of EVE by comparing model predictions and data 
from mutational scanning experiments that measure multiple facets of fitness for thousands of 
mutations to viral proteins30–37. Model performance approaches the correlation (ρ) between 
experimental replicates, including viral replication for influenza31 (ρ = 0.53) and HIV30 (ρ = 0.48) 
(Figure S1-S2, Data S2, Table S3). For SARS-CoV-2, we trained EVE across broad pre-pandemic 
coronavirus sequences, from sarbecoviruses like SARS-CoV-1 to “common cold” seasonal 
coronaviruses like the Alphacoronavirus NL63 (Table S1, Data S1), and compared predictions to 
measures of expression (ρ = 0.45) and receptor binding35 (ρ = 0.26) (Figure S1-S3). We note that 
sites which express in the DMS experiments but are predicted deleterious by EVE are frequently 
in contact with non-assayed domains of the Spike protein or with the trimer interface – interactions 
not captured in the RBD yeast-display experiment (Figure S3).  
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The second model component, antibody accessibility, is motivated by the need to identify 
potential antibody binding sites without prior knowledge of B cell epitopes. Accessibility of each 
residue is computed from its negative weighted residue-contact number across available 3D 
conformations (without antibodies), which captures both protrusion from the core structure and 
conformational flexibility38–41 (Figure S4, Table S4). Finally, dissimilarity is computed using 
differences in hydrophobicity and charge, properties known to impact protein-protein 
interactions42–44. This simple metric correlates with experimentally measured within-site escape 
more than individual chemical properties, BLOSUM substitution-matrix derived distance45, or 
distance in the latent space of the EVE model (Figure S5). To support modularity and 
interpretability of the impact of each component, each term is separately standardized and then 
fed into a temperature-scaled logistic function (Methods, Data S3-S4).  
 
Anticipating pandemic variation with pre-pandemic data  
Extensive surveillance sequencing and experimentation prompted by the COVID-19 pandemic 
have presented a unique opportunity to assess EVEscape’s ability to predict immune evasion 
before escape mutations are observed46,47. To test the model’s capacity to make early 
predictions, we carried out a retrospective study using only information available before the 
pandemic (training on Spike sequences across Coronaviridae available prior to January 2020; 
Table S1, Data S1). We then evaluated the method by comparing predictions against what was 
subsequently learned about SARS-CoV-2 Spike immune interactions and immune escape.  
 
The top predicted escape mutations for the whole of Spike are strongly biased towards the 
receptor-binding domain (RBD) and N-terminal domain (NTD), coincident with the bias for 
antigenic regions seen in the pandemic48,49 (Figures 2A-B, Figure S6). Within these domains, 
EVEscape scores are biased towards neutralizing regions—the receptor-binding motif of the 
RBD and the neutralizing supersite50 in the NTD (Figure 2C). EVEscape’s ability to identify the 
most immunogenic domains of viral proteins without knowledge of specific antibodies or their 
epitopes could provide crucial information for early development of subunit vaccines in an 
emerging pandemic51. 
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Figure 2: EVEscape identifies antigenic regions without antibody information. a) EVEscape scores mapped 
onto a representative Spike 3D structure (PDB identifier: 7BNN) highlight high-scoring regions with many observed 
pandemic variants, both in the RBD (receptor-binding domain) and NTD (N-terminal domain). Spheres indicate sites 
with mutations observed more than 10,000 times in the GISAID sequence database. b) The top decile of EVEscape 
predictions span diverse epitope regions across Spike, but the majority of predictions are in the NTD and RBD, which 
have a disproportionately high number of predicted EVEscape sites relative to their sequence length (enrichment). 
The regions considered are NTD (sequence positions 14 - 306), RBD (319 - 542), S1* (543 - 685), and S2 (686 - 
1273), where S1* refers to the region in S1 between RBD and the S2. c) Neutralizing sub-regions – RBM (receptor-
binding motif, 438-506) and NTD supersite50 (14-20,140-158, 245-263) – have significantly higher than average 
EVEscape scores, relative to a distribution of 150 random contiguous regions of the same length within the RBD and 
NTD, respectively. 

 
We next compare model predictions to mutations that were subsequently observed in the 
pandemic as deposited in GISAID (Global Initiative on Sharing All Influenza Data)46, which 
contains over 500,000 unique sequences with over 12,000 missense mutations to Spike. For 
this analysis we focus on the RBD of Spike as this domain has been the most extensively 
studied due to its immunodominance48,49.  
 
49% of our top RBD predictions were seen in the pandemic by December 2022 (Figure 3A, 
Figure S7; this proportion is robust to the threshold defining top escape mutations). The more 
often a mutation occurred in the pandemic, the more likely it is to be predicted by our method — 
57% of high frequency observed substitutions are in the top EVEscape predictions (Figures 3B-
C). We expect that the highest frequency mutations, seen in historical Variants of Concern 
(VOCs), will be enriched for escape variants that provide a fitness advantage in an immune 
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population (whilst not expecting that all single substitutions in the VOCs will contribute to 
escape).  
 

 
Figure 3: Pre-pandemic EVEscape is as accurate as intra-pandemic experimental scans at anticipating 
pandemic variation: retrospective analysis. a) Percent of top decile predicted escape mutations by EVEscape, 
mutational scan experiments (Bloom Set, Table S5), and a previous computational model52 seen over 100 times in 
GISAID by each date since the start of the pandemic. EVEscape based on pre-pandemic sequences anticipates 
pandemic variation at least on par with mutational scan experiments based on antibodies and sera available 10 or 17 
months into the pandemic. Analysis focuses only on nonsynonymous point mutations that are a single nucleotide 
distance away from the Wuhan viral sequence. RBD is the receptor-binding domain of the Spike protein. b) Percent 
of observed pandemic mutations in top decile of escape predictions by observed frequency during the pandemic. 
High-frequency mutations in particular are well-captured by EVEscape. c) The majority of RBD mutations observed in 
VOC strains have high EVEscape scores and somewhat lower scores in the mutational scan experiments against 
pandemic sera. d) EVEscape can predict escape mutations in the epitope of the former therapeutic antibody 
bamlanivimab. E484 is involved in a salt bridge with R96 and R50 of bamlanivimab, which lost FDA Emergency Use 
Authorization due to Omicron’s emergence, wherein E484A or E484K mutations (both predicted in the top 1% of 
EVEscape Spike predictions) escape binding due to the loss of these salt bridges53. e) Precision-recall curve of RBD 
escape predictions of EVEscape, EVEscape fitness component only (EVE model) and previous computational 
model52 when compared to DMS escape mutations (AUPRC reported with a comparison to a “null” model where 
escape mutations are randomly predicted). 
 
Not surprisingly, the fitness model component alone (here EVE23) is better that the full 
EVEscape model at predicting mutations seen at low frequency in the pandemic – likely 
because these mutations retain viral function but do not necessarily affect antibody binding or 
have a strong fitness advantage over other strains (Figures S7-S8). This suggests that 
EVEscape’s immune-specific components reflect important pandemic constraints and allow for 
mutation interpretability. For instance, VOC mutations R190S and R408S, with high EVEscape 
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but low EVE scores, are in hydrophobic pockets that may facilitate significant immune escape54 
(Figure S8). Meanwhile, the few VOC mutations (i.e., A222V and T547K) with significant EVE—
but not EVEscape—scores have functional improvements such as monomer packing and RBD 
opening but do not impact escape55,56 (Figure S8). We also see that the proportion of EVEscape 
predictions seen during the pandemic increased over time—from 3% in December 2020 to 49% 
in December 2022 (Figure 3A)—and should continue to increase, an expected trend both as 
more variants are observed and as adaptive immune pressure increases57 with the growing 
vaccinated or previously infected population. Similarly, the fraction of mutations in VOC strains 
with high EVEscape scores has also increased (Figure S7).  
 
Our model also predicted escape mutations that were subsequently observed in the pandemic in 
the epitopes of well-known therapeutic monoclonal antibodies under current or former Emergency 
Use Authorization47 (Figure S9), e.g., N440, E484A/K/Q, and Q493R. These predictions 
demonstrate the interplay of our three model components; for instance, the high accessibility as 
well as mutability of E484 results in 50% of all possible mutations at this site in the top 2% of 
EVEscape predictions and includes E484A/K in the top 1%—notable for escape from 
bamlanivimab53 (Figure 3D)—because of their high dissimilarity scores. We also identify 
candidate escape mutations in these therapeutic epitopes that have not yet been observed at 
frequencies higher than 10,000 – for instance variants to K444 and K417 (Figure S9), a subset of 
which are beginning to appear. This result suggests that escape sites can be well predicted before 
a pandemic and may have concrete applications for escape-resistant therapeutic design and early 
warning of waning effectiveness. 
 
EVEscape represents a significant improvement over past computational methods. EVEscape is 
more than twice as predictive as prior unsupervised models52, both at predicting pandemic 
mutations (49% vs. 24% of top predictions observed in pandemic and 57% vs. 9% of highest 
frequency mutations predicted) as well as experimental measures of antibody escape (0.53 vs. 
0.24 AUPRC) (Figures 3A-B, Figure 3E, Figure S7, Figures S10-S11, Figure S14, Table S5). All 
EVEscape components play a role in these predictions, with fitness predictions and accessibility 
metrics identifying sites of escape mutations while dissimilarity identifies amino acids that 
facilitate escape within sites (Figure S12-13). Moreover, other computational methods20,22 focus 
on near term prediction of strain dominance rather than longer term anticipation of immune 
evasion as they rely on pandemic sequences, antibody-bound Spike structures, or both, thereby 
hindering the ability to assess early predictive capacity. It is therefore notable that EVEscape 
outperforms even supervised approaches at predicting mutations seen in the pandemic (Figure 
S7).  
 
Comparative accuracy of EVEscape and high-throughput experiments 
We contextualize the performance of EVEscape in comparison to deep mutational scans (DMS), 
which have been invaluable in identifying and predicting viral variants that may confer immune 
escape3–13. However, these experiments require polyclonal or monoclonal antibodies from 
infected or vaccinated people, limiting their early predictive capacity. For example, the DMS 
experiments conducted by 17 months into the pandemic (using 36 antibodies and 55 sera 



 

8 

samples) are a third more predictive (46% vs. 34% observed) than the experiments conducted 7 
months prior (using just 10 antibodies) (Figure 3A, Figure S7). 
 
Despite being computed on sequences available more than 17 months earlier, EVEscape is as 
good as, or better than, the latest DMS scans at anticipating pandemic variation (49% vs. 46% 
observed, respectively, when considering the top decile of prediction) (Figure 3A). As we consider 
higher frequency mutations, EVEscape increasingly predicts a greater portion of pandemic 
variation than experiments (Figure 3B) and predicts a higher fraction of mutations in VOC strains 
(Figure 3C).  
 
Discrepancies between EVEscape and experiments shed light on the complementary strengths 
of these approaches. EVEscape and experiments miss 41 and 46 pandemic mutations, 
respectively, that are predicted by the other method (Figure 4A, Figure 4D). These differences 
could indicate model inaccuracies or could reflect sparse sampling of host sera response in DMS 
experiments as well as artifacts from experiments testing only the RBD domain and missing the 
full set of in vivo constraints. Indeed, as more antibodies are incorporated in experiments, the 
agreement between EVEscape and experimental predictions increases (Figure S14). The 
majority of high EVEscape predictions that are not observed in experimental predictions are in 
known antibody epitopes (Figure 4B, Figure S13). By contrast, those mutations identified by the 
experiments that are below the threshold in EVEscape predictions are often predicted to have low 
fitness due to high conservation in the alignment at those positions.  
 

 
Figure 4: EVEscape and experiments make distinct, complementary escape predictions a) Share of top decile 
of predicted escape mutations, predicted using EVEscape or based on mutational scan experiments (Bloom Set, 
Table S5), seen so far over 100 times in the pandemic. As the virus evolves further, more of the predicted escape 
mutations are expected to appear. b) RBD site-averaged EVEscape scores agree with site-averaged antibody 
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escape experimental mutational scan measures (Bloom Set, Table S5), with high EVEscape sites that are missing 
from experimental escape prediction found within known antibody footprints. Hue indicates known antibody footprints 
from the PDB (information that EVEscape does not use as a pre-pandemic model). c) Predicted escape mutations 
based on experimental mutational scans (Bloom Set, Table S5) measuring recognition by convalescent sera from 
patients infected with either Wuhan, Beta, or Delta have high EVEscape scores. Mutations that escape sera are 
colored by whether they have occurred in the pandemic over 100 times. d) Heatmaps illustrating the EVEscape 
scores of all single mutations to the Wuhan sequence of SARS-CoV-2 RBD. Top lines are sites with observed 
pandemic mutation frequency >100 and sites in the top 15% of DMS experimental predictions based on mutational 
scan experiments. RBM is the receptor-binding motif. 
 
The consensus between EVEscape and experiments is also of interest. We see that agreement 
is especially strong for polyclonal patient sera (Figure S14); in fact, half of the top 10% of 
EVEscape RBD sites are sera escape sites from experiments5–7,14,15 (Figure 4C). These mutants 
are of particular interest since they escape from the unique composition of antibodies produced 
by convalescent patients and are thus crucial to considerations of reinfection and vaccine design. 
For instance, E484, mutated in several VOCs, has the highest experimental sera binding and is 
the top EVEscape predicted site.  
 
Adapting EVEscape to reflect pandemic characteristics through its modular framework 
The modular design of our framework facilitates its adaptability to the specific characteristics of 
a pandemic and to new data as it becomes available. To consider the effects of insertions and 
deletions on SARS-CoV-2 Spike immune escape58, we replace the EVE fitness component with 
TranceptEVE59 – a recently developed protein large language model which has previously 
demonstrated state-of-the-art performance for mutation effects prediction, including indels, 
which both prior computational models and high-throughput experiments have been unable to 
capture for SARS-CoV-2. When applied to the pandemic, this model captures the most frequent 
single insertion and deletion, both at site 144, each in the top decile of pandemic and random 
indel predictions (Figure S15). We also show that including glycosylation in the dissimilarity 
component for HIV Env, where glycans play an important role in immune escape60–63, improves 
model predictions of high-throughput experimental escape17 (Area under the precision recall 
curve raises 10% when including glycosylation for HIV; Figure S16). Additionally, we retrain 
EVE models with the addition of 11 million new sequences collected during the pandemic, which 
helps improve agreement with fitness DMS experiments by 20% (Figures S1, S17). This model 
captures epistatic shifts between Wuhan and BA.2, identifying changes in mutation fitness in the 
RBD and near BA.2 mutations and predicting positive epistatic shifts for known convergent 
omicron mutations and likely-epistatic wastewater mutations64 (Figure S18).  
 
Strain forecasting with EVEscape 
A key application of an escape prediction framework is to identify circulating strains with high 
immune escape potential soon after their emergence, thus enabling the deployment of targeted 
vaccines and therapeutics before their spread. While the World Health Organization seeks to 
identify new high-risk variants as they arise, new strains are occurring at an increasing rate with 
now tens of thousands of novel SARS-CoV-2 strains each month, a scale infeasible for 
experimental risk assessment65. To create strain-level escape predictions, we aggregated 
EVEscape predictions across all individual Spike mutations in a strain. We evaluated EVEscape 
strain predictions for their alignment with experimental measures of strain immune evasion as 
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well as their identification of known escape strains from pools of random sequences and from 
other strains observed at the same pandemic timepoint. 
 
First, we see that pre-pandemic EVEscape-strain scores correlate well with experiments 
quantifying vaccinated sera neutralization of 21 strains22 (ρ = 0.80; Figure 5A, Data S5), better 
than an existing computational strain-scoring method (ρ = 0.77)22  even though that method uses 
332 pandemic antibody-Spike structures for the prediction. Second, we show that EVEscape-
strain scores for VOCs are consistently higher than random sequences at the same mutational 
depth, and in particular the Beta and later Omicron BA.2, BA.4, BA.2.12.1, BA.2.75, and XBB 
strains are in the top 1% of these generated sequences (Figure S19). EVEscape strain scores for 
these VOCs are also in the top 2% against sequences composed only of mutations already known 
to be favorable — those seen more than 100 times in GISAID, and even more strikingly, against 
combinations of mutations sampled from other VOCs (Figure S19).  
 

 
Figure 5: EVEscape applications: Identifying strains with high escape potential and forecasting escape for 
future pandemics. a)  Pre-pandemic EVEscape scores computed for pandemic strains correlate with fold reduction in 
50% pseudovirus neutralization titer22 for each strain relative to Wuhan (ρ = 0.80, n = 21). Linear regression line shown 
with a 95% confidence interval. b) Distributions of newly emerging EVEscape strain scores for non-VOCs (unique 
combinations of mutations) throughout 12 periods of the pandemic, with counts of the number of unique new strains 
per period. EVEscape strain scores increase throughout the pandemic. High frequency VOCs (occurring more than 
5000 times) are shown in the first period each emerged, depicting that new VOCs are predicted to have higher escape 
scores than most strains in all previous time periods. c) Pandemic circulating strains are grouped according to their 
EVEscape decile relative to other strains emerging in the same non-overlapping two-week surveillance window. The 
relative prevalence of each EVEscape decile over the course of the pandemic is plotted in a stacked line-plot. The 
majority of circulating strains fall into the top 10% bin. Proportions do not sum to 100% as strains that emerged before 
the surveillance period of 9/2020 – 3/2023 are not included. d) VOCs (dotted lines) are among the highest scoring of 
hundreds or thousands of new strains (histograms) within their two-week window of emergence, enabling EVEscape 
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to forecast which strains will dominate as soon as they appear after only a single observation. e) Site-wise maximum 
EVEscape scores on Lassa Virus Glycoprotein structure (PDB: 7PUY). We show agreement between sites of high 
EVEscape scores (in red) and escape mutations with experimental evidence (shown with spheres). 

Lastly, we examine EVEscape’s ability to identify immune-evading strains as they emerged in the 
pandemic. We see that EVEscape scores have increased throughout the pandemic and that they 
are higher for more recent VOCs, reflecting their increased propensity for immune escape (Figure 
5B). Moreover, EVEscape scores for newly emerging VOCs are higher than almost all strains in 
previous time periods (Figure 5B). Taken together, these results suggest EVEscape’s promise as 
an early-detection tool for picking out the most concerning variants from the large pool of available 
pandemic sequencing data. We therefore examine EVEscape’s utility as a tool to identify strains 
with high escape potential as they emerge in two-week surveillance windows. We see that the 
majority of circulating strains were in the top decile of EVEscape scores for their two-week window 
of emergence (Figure 5C). Moreover, in the two-week windows where the VOC strains Alpha, 
Beta, Gamma, Omicron BA.1, and Omicron BA.2.75 emerged, each VOC ranked in the top 5 of 
hundreds or thousands of new strains (Figure 5D, Figure S19). This demonstrates the ability of 
EVEscape to forecast which strains will dominate as soon as they appear after only a single 
observation, even as experimental testing of all emerging strains has become intractable. 
 
To enable real-time variant escape tracking, we make monthly predictions (Data S5) available on 
our website (evescape.org), with EVEscape rankings of newly occurring variants from GISAID 
and interactive visualizations of likely future mutations to our top predicted strains. In sum, the 
EVEscape model captures relative immune evasion of successful strains and can identify 
concerning strains from pools of random combinations of mutations as well as from their temporal 
peers.  
 
EVEscape generalizes to other viral families with pandemic potential 
Most viruses with pandemic potential have far less surveillance and research than SARS-CoV-
266. One of the main features of EVEscape is the ability to predict viral antibody escape before a 
pandemic—without the consequent increase in data during a pandemic—to narrow down vaccine 
sequences and therapeutics most likely to provide lasting protection, to assess strains as they 
arise, and to provide a watch list for mutations that might compromise any existing therapies. As 
one of the first comprehensive analyses of escape in these viruses, we applied the EVEscape 
methodology to predict escape mutations to the Lassa virus and Nipah virus surface proteins; 
these viruses cause sporadic outbreaks of Lassa hemorrhagic fever in West Africa and highly 
lethal Nipah virus infection outbreaks in Bangladesh, Malaysia, and India. Crucially, the three 
mutants present in the Lassa IV lineage that are known to escape neutralizing antibodies67 are all 
in the top 10% of EVEscape predictions, suggesting that EVEscape captures features relevant 
for Lassa glycoprotein antibody escape (Figure 5E). EVEscape predictions also identify 11 of 12 
known escape mutants to Nipah antibodies68–72 (Figure S20).  
 
Moreover, we demonstrate generalizability to Influenza Hemagglutinin16 and HIV Env17 based on 
DMS evaluation (Figure S10, Data S3). Based on these findings, we provide all single mutant 
escape predictions for these proteins (Data S5) to inform active and ongoing vaccine development 
efforts with the goal of mitigating future epidemic spread and morbidity. 
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Discussion 
One of the greatest obstacles for developing vaccines and therapeutics to contain a viral epidemic 
is the high genetic diversity derived from viral mutation and recombination, especially when under 
pressure from the host immune system. An early sense of potential escape mutations could inform 
vaccine and therapeutic design to better curb viral spread. Computational models can learn from 
the viral evolutionary record available at pandemic-onset and are widely extensible to mutations 
and their combinations. However, novel pandemic constraints (such as immunity) are unlikely to 
be captured. To achieve early escape prediction, EVEscape combines a model trained on 
historical viral evolution with a biologically informed strategy using only protein structure and 
biophysical constraints to anticipate the effects of immune selection. We demonstrate that 
EVEscape forecasts pandemic escape mutations and can predict which emerging strains have 
high escape potential through a retrospective analysis of the SARS-CoV-2 pandemic. This 
computational approach can preempt predictions from experiments that rely on pandemic 
antibodies and sera by many months while providing similar levels of accuracy.  
 
EVEscape provides surprisingly accurate early predictions of prevalent escape mutations but 
cannot anticipate all constraints unique to a new pandemic to determine the precise trajectory of 
viral evolution. This method will be best leveraged in synergy with experiments developed to 
measure immune evasion and enhanced with pandemic data as it becomes available. Early in a 
pandemic, EVEscape can predict likely escape mutations for prioritized experimental screening 
with the first available sera samples – validated escape mutations could be strong candidates for 
multivalent vaccines. EVEscape can also identify structural regions with high escape potential, so 
therapeutic antibody candidates with few potential escape mutants in their binding footprint may 
be accelerated. Later in a pandemic, EVEscape can rank emerging strains, as well as mutants 
on top of prevalent strains, for their escape potential, flagging concerning variants early on for 
rapid experimental characterization and incorporation into vaccine boosters. The model can also 
be augmented to leverage current knowledge on virus-specific immune targeting and mutation 
tolerance from experimental and pandemic surveillance data. In return, our computational 
framework can inform this collective understanding by proposing escape variant libraries for 
focused experimental investigations.  
 
EVEscape is a modular, scalable, and interpretable probabilistic framework designed to predict 
escape mutations early in a pandemic and to identify observed strains and their mutants that are 
most likely to thrive in a populace with widespread pre-existing immunity as the pandemic 
progresses. To this end, we provide EVEscape scores for all single mutation variants of SARS-
CoV-2 Spike to Wuhan as well as scores for all observed strains and predictions of single mutation 
effects on the most concerning emerging strain backgrounds, with plans to continuously update 
with new strains. As the framework is generalizable across viruses, EVEscape can be used from 
the start for future pandemics as well as to better understand and prepare for emerging 
pathogens. To further accelerate broad and effective vaccine development, we provide EVEscape 
mutation predictions for all single mutations to Influenza, HIV, Lassa virus and Nipah virus surface 
proteins.  
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Data and Code Availability 
All data is provided in supplementary materials. Code is available on GitHub[1]. 
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Supplementary Data 6: Acknowledgements for all GISAID sequences.  
 
Methods 
Data acquisition: 
Training Data 
Multiple sequence alignments for fitness models 
For each viral protein, we construct multiple sequence alignments performing 5 iterations of the 
profile-HMM based homology search tool jackhmmer73 against the UniRef100 database74. As 
previously reported for EVE, DeepSequence, and EVcouplings, we generally keep sequences 
that align to at least 50% of the target sequence and columns with at least 70% coverage, 
except in the case of SARS-CoV-2 Spike where we use lower column coverage as needed (30-
70%) to maximally cover experimental positions and significant pandemic sites23–25. For our pre-
pandemic (pre-2020) alignment used as the primary model throughout this paper, we remove 
pandemic sequences using the “date of creation” variable from UniRef. We optimize search 
depth to maximize sequence coverage and the effective number of sequences (Neff) included 
after re-weighting similar protein sequences in the alignment within a Hamming distance cutoff 
(theta) of 0.01. To select sequence depth, we prioritized alignments with coverage >0.7L and 
Neff/L>1, or if this was not attainable, relaxed the requirements for Neff/L (Table S2).  
Alignments with pandemic sequences 
We construct an “evolutionary alignment” with non-SARS-CoV-2 sequences as described above 
using jackhmmer (with at least 50% sequence coverage, at least 30% column coverage, and 
theta of 0.01). We extract the full sequences pulled into the jackhammer alignment and re-align 
the sequences using super575, then remove gapped positions relative to the Wuhan sequence. 
We also construct a “pandemic alignment” with all unique Spike sequences (with count >100) 
seen up until 11/27/21 (when BA.2 first appeared in GISAID). We then concatenate that 
“pandemic alignment” with the “evolutionary alignment” to create the final alignment. 
Protein structures for accessibility calculation 
For each viral surface protein, we selected crystal structures representing known structural 
states available to B-cell and antibody interactions (extracellular conformations) (Table S4). All 
heteroatoms and protein chains not part of the multimeric viral surface protein were removed. 
 
Evaluation data 
Antibody footprints 
To identify known antibody footprints of viral surface proteins in the RCSB PDB76, we queried 
the database with the protein name and the word “antibody” and required that the source 
organism contain both “Homo sapiens” and the given virus name. Then for each structure we 
identified antibody and viral protein polymer entities and computed the antibody footprint as any 
residue with any atom within 3.5 angstroms of the antibody. Finally, we mapped footprints to the 
target viral protein sequence by using SIFTS to renumber all hits according to a UniProt ID, then 
used a MUSCLE multiple sequence alignment of the different UniProt sequences to map those 
hits to the target viral protein sequence. We use this same method to identify antibody footprints 
for specific clinical antibodies. For experimental evidence of clinical antibody escape 
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susceptibility, we used the Stanford Coronavirus Antiviral & Resistance Database (CoV-RDB) 
susceptibility summary for monoclonal antibodies under emergency use authorization.47. 
Deep mutational scans 
We benchmark our models on a series of viral protein deep mutational scans3–17,30–37 (Table S3, 
Table S5). For each viral mutational scan, we select the variable or variables of protein fitness 
or antibody escape treated as primary in the publications. For mutants where the result is 
provided as residue frequencies observed at a given site (such as results expressed as 
preferences and processed by dms_tools2), we normalize the data at each site by dividing by 
the value of the wild-type residue. For the HIV analysis, we exclude antibody VRC34.01 due to 
its large spread of escape mutation distal to the epitope77. For SARS-CoV-2 RBD, we use only 
antibodies/sera escape data from the Wuhan sequence for our primary results. We also utilize 
data provided about the antibodies tested for the SARS-CoV-2 escape DMS studies, including 
the class of each antibody as well as the SARS-CoV-2 neutralization potency and sarbecovirus 
binding breadth9. We use the RBD dimeric ACE2 binding and expression DMS data for 
analysis35. 
Pandemic sequencing data 
We downloaded data on Spike variants and their deposit dates in the Global Initiative on 
Sharing All Influenza Data (GISAID) EpiCoV project database (www.gisaid.org)46 on 10/24/22. 
We further processed this data to get counts of combinations of mutations, the date of 
emergence, and PANGO lineage, as well as to get the month of emergence for each single 
mutation in Spike. We also downloaded consensus mutations for each PANGO lineage on 
10/31/22 and mutation frequencies on 10/26/22 from Covid-19 CG78.  
Lassa virus and Nipah virus antibody escape data 
We aggregated data on single mutations resulting in escape from known Lassa and Nipah virus 
antibodies from literature studies with experimentally determined reduction in antibody binding, 
reduction in antibody neutralization, or emergence in growth selection experiments67–72. 
Epistasis mutation sets 
Our convergent omicron mutation set is defining mutations in Omicron lineages at sites 346, 
444, 452, 460, and 486. This set is:  L452R, N460K, F486V, K444N, L452M, F486I, R346T, 
F490S, K444M, K444T. 
Our wastewater mutation set is the set of mutations from Smyth et al.64, which are mutations 
that were frequent in wastewater, but had rarely been seen clinically (pre-Omicron, mid 2021), 
so may be likely epistatic. This set is:  Q493K, Q498Y, Q498H, T572N, H519N, H519Q. 
Strain Neutralization data 
We download neutralization data from Beguir et al.22, which contains the observed 50% 
pseudovirus neutralization titer (pVNT50) for 21 SARS-CoV-2 S protein variants. The pVNT50 

reduction is relative to Wuhan. Neutralization is measured for n ≥ 12 sera collected after primary 
2-dose vaccination by the Pfizer BioNTech vaccine (BNT162b2) and assessed against vesicular 
stomatitis virus (VSV)-based pseudoviruses with each S protein variant. 
 
Modeling approach: 
Overarching framework 
We express the probability of a single amino acid substitution to lead to immune escape as the 
product of three conditional probabilities (Figure 1A): 
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𝑷(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑒𝑠𝑐𝑎𝑝𝑒𝑠	𝑖𝑚𝑚𝑢𝑛𝑖𝑡𝑦)
= 	𝑷(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑠	𝑓𝑖𝑡𝑛𝑒𝑠𝑠) ∗ 	𝑷(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒	𝑡𝑜	𝑎𝑛𝑡𝑖𝑏𝑜𝑑𝑦	|	𝑓𝑖𝑡) 	
∗ 	𝑷(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑠	𝑎𝑛𝑡𝑖𝑏𝑜𝑑𝑦	𝑏𝑖𝑛𝑑𝑖𝑛𝑔	|	𝑓𝑖𝑡, 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒) 

The EVEscape index estimates the log likelihood of escape as per the above equation. The 
fitness factor is obtained via a deep generative model for fitness prediction, while the 
accessibility and dissimilarity factors are features derived respectively from the known 3D 
structures for the viral protein and chemical characteristics of the amino acids involved in the 
mutation compared to the wild-type (see below for details). 
Once selected, each factor is standardized and fed into a temperature scaled logistic function: 
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where the standardize(.) operator corresponds to standard scaling. We then take the log 
transform of the product of the 3 terms to obtain the final EVEscape scores. 
Factor-specific temperature scaling helps recalibrate probability estimates for each term. We 
provide our hyperparameter grid search of these temperature hyperparameters across viruses 
in Data S4, examining versions of the model where we either include or do not include 
glycosylation in the dissimilarity term. We find that the fitness and accessibility components are 
already properly calibrated (Tfitness = Taccessibility = 1.0), while the dissimilarity component benefits 
from being slightly rescaled (Tdissimilarity = 2.0). 
Fitness metric 
Observed viral protein sequences reflect evolution under selection constraints for functional and 
infectious viruses. Generative sequence models express the probability that a sequence 
𝑥	would be generated by this process as 𝑝(𝑥|𝜃), where the parameters 𝜃 capture the constraints 
describing functional variants. A generative model trained on observed viral protein variants can 
then be used to estimate the relative plausibility of a given mutant sequence as compared to 
wild-type by using the log ratio of sequence likelihoods as a heuristic:  

𝑙𝑜𝑔
𝑝(𝑥-/#'$#|𝜃)
𝑝(𝑥0"*,#+1%|𝜃)

 

EVE (Evolutionary model of Variant Effects)23 is a Bayesian variational autoencoder (VAE)79, 
capable of capturing complex higher-order interactions across sequence positions. The fitness 
of a given protein sequence is measured via the log likelihood ratio of the mutated sequence x 
over that of the reference wild-type sequence w. Since an exact computation of the log 
likelihood of a sequence is intractable, we approximate it with the Evidence Lower Bound 
(ELBO) loss used to optimize the VAE: 

𝐸	343(𝑥) = −𝑙𝑜𝑔
𝑝(𝑥|𝜃)
𝑝(𝑤|𝜃)

~	𝐸𝐿𝐵𝑂(𝑤) − 𝐸𝐿𝐵𝑂(𝑥) 
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The ELBO term itself is estimated via Monte Carlo sampling, using 20k samples from the 
approximate posterior distribution. These approximations have been shown to provide strong 
results in practice23. Results are obtained by ensembling scores from 5 independently trained 
EVE models with different random seeds. 
We train the different models following the procedure from the original EVE paper (see Frazer et 
al.23, Supplementary Section 3.2), using similarly-sized EVE models and with the same training 
hyperparameters. The only difference in our training procedure is that we slightly relax the 
constraint on minimum column coverage for sequences in the training MSAs (50% instead of 
70%) as it led to superior fitness prediction performance in our hyperparameter tuning analyses 
for the different viruses modeled in this work.  
In experiments aimed at illustrating the modularity of the EVEscape framework we leverage 
TranceptEVE, a recently developed protein language model with state-of-the-art performance 
for mutation effects predictions59. TranceptEVE is itself based off of two key components: 1) 
Tranception80, a family-agnostic autoregressive transformer trained on a large quantity of 
unaligned protein sequences from Uniref10074 from February 2022. 2) A family-specific EVE 
model that is trained to score sequences for a family of interest, and which acts as a prior 
distribution over amino acids at each sequence position. The predicted fitness for a given 
sequence is then obtained as a weighted average of the log likelihood assigned by these two 
components – the weights depending on the depth of the alignment used to train the underlying 
EVE model (deeper alignments implying a larger weight assigned to the EVE log likelihood). 
For the experiments conducted in this work, we use the same ensemble of 5 EVE models as 
described above, as well as the large Tranception model checkpoint (~700M model parameters) 
made available in Notin et al.80 which was trained on Uniref100 (see details of the training 
procedure in the corresponding paper in Appendix B.3). 
Accessibility metric 
Surface accessibility plays a key role in identifying where antibodies are most likely to contact a 
protein. While relative solvent accessibility (RSA) and weighted contact number (WCN) both 
reflect features of accessibility, we selected WCN as this metric also captures protrusion from 
the core structure that corresponds with where antibodies are known to bind proteins38–41 
(Figure S4).  
 
Calculating weighted contact number 
We computed weighted contact numbers41 for each residue from structure as the sum of the 
square of the reciprocal distance between residue i and all other residues in the full protein (i.e., 
the full Spike trimer for SARS-CoV-2): 

𝑊𝐶𝑁"	 =P
1
𝑟"5657"

 

where 𝑟"5 	is the distance between the geometric centers of the residue i and residue j side 
chains. Weighted contact number, beyond capturing surface accessibility, captures protrusion 
from the core structure and conformational flexibility38–41. By using squared distance, this value 
focuses on the degree of local interaction, and acts as a measure of exposure to the local 
environment that would permit antibody binding. It is both a simple and fast metric. We impute 
missing values in WCN due to gaps in the protein structure using the mean of WCN values of 
the residues preceding and following the gap. 
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RSA: 
We also explored RSA as a potential accessibility metric. To do so, we first computed 
accessible surface area based on hypothetical exposure to solvent water molecules using 
DSSP81. To calculate relative accessible surface area (RSA), we divided accessible surface 
area by the residue maximum accessibilities determined in Sander et al82. We impute missing 
values in RSA due to gaps in the protein structure by using the mean of RSA values of the 
residues preceding and following the gap (counting residues adjacent to the gap with RSA 
values>1 as part of the gap). 
Aggregating across structures: 
When computing antibody-binding likelihood metrics across different structural conformations 
(i.e., both open and closed structures for SARS-CoV-2 Spike) we used the maximum 
accessibility (or minimum weighted contact numbers).  
Dissimilarity metric 
To predict the likelihood of a given mutation displacing an antibody interaction, we used a 
charge-hydrophobicity based measure of functional dissimilarity between the wild-type residue 
and the mutation residue. These are chosen as properties known to impact protein-protein 
interactions42,43. We compare our metric to individual chemical properties, substitution matrices, 
and the distance in the latent space of a VAE. We also experiment with incorporating 
glycosylation in our dissimilarity metric. 
Charge-hydrophobicity 
To compute a combined charge-hydrophobicity dissimilarity index, we standard-scaled the 
charge and hydrophobicity differences and then took the sum of the scaled differences. We use 
the Eisenberg-weiss hydrophobicity consensus scale44 and amino acid charge (as 1/0/-1) at 
physiological pH.  
Chemical properties 
We compared our metric to differences in residue size (side-chain mass), hydrophobicity, and 
charge.  
Substitution Matrices 
We compared our metric to the BLOSUM6245 matrix after dropping the null transition diagonal 
values.  
Latent space distances 
We also compared our metric to a metric of mutation distance learned by the EVE variational 
autoencoder. We calculated the L1 distance between the encoded representations of the wild-
type viral protein sequence and a given single-mutation sequence in the latent space of the 
model, inspired by a similar approach first introduced by Hie et al.52 
Glycosylation 
We developed a version of our model considering glycosylation loss as a contributor to 
dissimilarity. While addition of glycosylation is also important for escape60–63, we focus here on 
loss of glycosylation for simplicity. In this version, we maximize the charge-hydrophobicity 
dissimilarity term if a mutation is likely to result in loss of a surface N-glycan site. We identified 
surface N-glycan sites as NxS/T sequons (where x is any amino acid except proline) with the N 
residue having an RSA>0.2. We consider that a mutation is likely to result in loss of 
glycosylation if the N or S/T is lost. We note that this can be an important factor for real-world 
escape even when some DMS experiments do not reflect the escape impacts of glycosylation 
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loss, as is the case for SARS-CoV-2 experiments that use yeast display, with glycans different 
than in mammalian cells4. For HIV on the other hand, a significant portion of escape mutations 
from DMS experiments are a result of escape effects of glycan gains and loss17.  
Imputing missing data 
We impute missing values of features in EVEscape using the mean value of the feature across 
the target protein. 
Insertions and Deletions 
Scores for indels utilize tranceptEVE as the fitness component, negative weighted contact 
number as the accessibility component, and a maximized dissimilarity component score.  
Strain-level EVEscape predictions 
We aggregate across combinations of mutations by summing the EVEscape scores for each 
mutation.   
 
Evaluation: 
Comparison to functional assays 
We compared model predictions to continuous experimental metrics of viral function using 
spearman’s rank correlation coefficient as our main evaluation metric, as previously 
described24,25. 
Comparison to escape DMS 
Data processing  
As escape data is noisy at levels of low escape and a relatively low fraction of mutants exhibit 
escape, we chose to treat the escape outcome variable as binary. We selected a threshold for 
escape by fitting a gamma distribution to the data (combined across all screened antibodies and 
sera) and selecting the threshold corresponding to a 5% false discovery rate17. As the number 
of antibodies tested for RBD is much higher than for Flu and HIV, we bootstrapped the RBD 
data selecting 8 antibodies 1000 times and fitting a gamma distribution to these samples, then 
selected the average 5% false discovery rate threshold. As these thresholds are subject to our 
choice of a false discovery rate, we also plot performance for a range of thresholds (Figure 
S11). We identified a mutant as “escape” if its maximum escape value across any antibody 
tested exceeded the threshold — so a mutation for RBD is “escape” if it exceeds the threshold 
for any antibodies/sera in the Bloom or the Xie datasets (Data S3). We use thresholds of 0.57 
for Bloom RBD, 0.9 for Xie RBD, 0.054 for Flu, and 0.138 for HIV to make model comparisons; 
mutations designated as escape by these experimental thresholds are almost all within 5Å of 
the antibody they escape (Figure S11).  Note that the downloaded RBD escape datasets were 
already filtered using thresholds on expression and ACE2 binding of -1 and -2.35, 
respectively83. 
To define a site-wise escape value, we averaged across the maximum escape values for each 
mutant at the site. For the antibody RBD DMS data, we define the antibody class of each 
mutation/site by determining the maximum number of antibodies for a given class that escape 
that mutation/site (Data S3).  
As the scales are different for the Bloom and Xie datasets, we focus on the original Bloom RBD 
DMS data when we need to consider the top fraction of escape mutations. We examine 
performance on Flu and HIV as a secondary analysis to confirm generalizability, as fewer 



 

20 

antibodies have been tested and the distribution of these antibodies does not reflect known 
immunodominant domains. 
Metrics 
To compare computational model performance in classifying escape mutants, we computed two 
metrics. We consider area under the receiver operating curve (AUROC) and area under the 
precision-recall curve (AUPRC). A key feature of an escape mutant predictor is the quality of its 
positive ‘escape’ predictions, as in practice, the positive predictive value will influence costly 
experimental screening efforts and selection of a limited number of variants for vaccine 
incorporation. To reflect this, we focus on the area under the precision-recall curve (AUPRC) as 
a performance metric (reported relative to the AUPRC of a “null” model), although other 
measures of overall statistical performance (e.g., AUROC) are provided in supplementary 
information.  
AUROC summarizes the tradeoff between true positives and false positives over a range of 
thresholds on the continuous model prediction score but is overly permissive in cases of 
imbalanced datasets–-although still suitable for assessing relative performance. The AUPRC 
metric summarizes the tradeoff between capturing all escape mutants (recall) and not 
incorrectly predicting escape mutants (precision). This approach is suitable for evaluating 
classification of imbalanced datasets but penalizes false positive predictions. In the case of 
escape predictors, false positive predictions may be due to insufficient sampling of the human 
antibody repertoire against the virus of interest, so this penalization is potentially too stringent. 
We normalize AUPRC by the “null” precision model AUPRC, which is equivalent to the fraction 
of escapes observed in the mutations experimentally screened. Therefore, AUPRC values are 
not comparable between viral proteins or subsets of DMS datasets with different fractions of 
escape mutations. 
Comparison to known antibody footprints 
We also evaluated the model’s ability to predict sites of antibody binding, as quantified by 
looking at antibody footprints in the RCSB PDB within a minimum all-atom distance of 3.5Å. 
Note that this is not information that is available to the model during training. 
Comparison to pandemic data 
Data Processing  
We evaluate the model against occurrence of single mutations and strains in GISAID. In 
determining the set of Spike mutations to compare EVEscape scores to GISAID data, we 
consider only those mutations that are a single RNA nucleotide mutation distance from Wuhan. 
The date of lineage emergence is the 1st percentile of dates for that variant (to avoid issues with 
outliers from GISAID data entry). Variants are marked as high frequency VOCs if their count is 
greater than 5,000 and it occurs in the first time period (pandemic divided into 12 periods) that 
any strain of that PANGO lineage appears. We define PANGO lineages for the VOCs by the 
nonsynonymous Spike consensus mutations for that strain from COVID-19 CG that occur in 
greater than 90% of strain sequences, ignoring insertions and deletions. Number of occurrences 
in the pandemic is defined by raw counts of GISAID records with a given substitution or set of 
substitutions. 
Metrics 
We calculate the fraction of predicted mutations (top 10%) seen in the pandemic over 100 
times. We expect to see an increase in this fraction over the course of the pandemic, as more 
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variants are observed and adaptive immune pressure increases with a growing vaccinated or 
previously infected population. We also calculate for each observed pandemic frequency 
minimum threshold, the percentage of pandemic mutants seen above that observed threshold 
that are predicted in the top 10%. We do not expect all pandemic mutants to be captured in the 
top 10% of predictions, because not all pandemic mutants are related to escape. Even amongst 
very frequent pandemic mutations mostly present in Variants of Concern, which we expect to be 
more enriched for high escape potential, we do not expect all of these mutations to be related to 
escape as some instead influence ACE2 binding or structural changes. To evaluate strain 
scores, we calculate the number of strains (and the corresponding percentile) that would need 
to be tested to have detected selected VOCs from all new strains in the two-week window they 
emerged. Unique new strains are defined by unique sets of Spike substitution mutations. 
Escape within clinical antibody epitopes 
We look at EVEscape predictions in the footprints (within 3.5Å) of six different clinical antibody 
epitopes. We then notate which of these mutations have already occurred in the pandemic 
(observed more than 10,000 times) and which have experimental evidence of escape for those 
clinical antibodies as seen in CoV-RDB47. We list all possible mutations, not just those a single 
nucleotide distance from Wuhan. 
Comparison to strain neutralization 
We show spearman correlation with experimental strain neutralization data as well as the linear 
regression line shown with a 95% confidence interval. EVEscape scores for these strains are 
calculated based on the mutations used in the experiment for each strain, ignoring indels. We 
convert percent reduction in neutralization (x) to fold reduction (1/1-x). 
Regional Enrichment 
We examine the distribution of EVEscape predictions throughout the Spike protein and, within 
the RBD, between the known footprints of different antibody classes84. We analyze enrichment 
of regions by comparing the average EVEscape score for the region to a distribution of the 
average EVEscape score of random regions. For comparison to full Spike, we compare to the 
scores of 500 random contiguous regions (of the same length as the region of interest) within 
Spike. For comparison to RBD, we compare to scores of 100 contiguous regions, using the full 
Spike model. We similarly compare scores of known neutralizing subregions to random regions 
in their respective full regions. We also compare enrichment of number of sites in the top 15% of 
EVEscape scores in each region relative to the length of the region. We consider the regions: 
NTD (sequence positions 14 - 306), RBD (319 - 542), S1* (543 - 685), and S2 (686 - 1273), 
where S1* refers to the region in S1 between RBD and S2. NTD and RBD are enriched in 
antibody sites. We also calculate the mutational tolerance of each region, the average EVE 
fitness score. 
Epistasis 
We analyze epistasis by comparing EVE scores on a Wuhan full Spike model (using a pre-
pandemic alignment) and on an omicron (BA.2) full Spike model (using an alignment with data 
up to BA.2). The BA.2 epistatic shift is the Wuhan linear regression residual for a model fit to the 
two sets of EVE scores for all single mutations to full Spike. We compare the epistatic shift of 
two subsets of mutations, convergent omicron mutations and wastewater mutations64, to the full 
set of single mutations to full Spike. We also analyze the locations of the maximum epistatic 
shift, in relation to the Spike structure and to the set of sites mutated within BA.2.  
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Comparison to other computational models 
We compare published SARS-CoV-2 RBD and Spike models predictions20,22,52,85 using metrics 
from above relevant to the intended purpose of each model (fitness or escape of either single 
mutations, sites, or strains).  
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