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ABSTRACT

The space of possible proteins is vast. For all but the smallest proteins, the number of

sequences exceeds the number of atoms in the observable universe. Evolution—through

the forces of natural selection, drift, and mutation—samples this space, leading to proteins

with diverse structures and functions. Evolutionary biologists interested in understanding

the history of a protein must identify signals from patterns of substitutions and decipher

their likely causes. However, the true evolutionary process is often unknown. Simulations

of protein evolution allow us to investigate various emergent phenomena with complete

knowledge of the generating parameters in hand. Additionally, using plausible simulating

models, we can assess the accuracy of inference procedures which, by necessity, make

simplifying assumptions about the process of sequence evolution. In this dissertation, I

focus on stability constraints of proteins using a modelling framework grounded in the

formalisms of thermodynamics and population genetics theory. In Chapter 2, I show that

stability-constrained evolution recapitulates various patterns present in natural alignments.

I demonstrate that epistasis due to stability leads to elevated substitution rates compared to

site-independent evolution and discuss the underlying mechanisms causing this increase.

Additionally, I investigate the accuracy of rate inference from commonly used inference

models. While the amount of among-site rate variability is often underestimated, the

inferred rates correlated with the most common rates across sites. In Chapter 3, I explore

the dynamics of resident amino acid propensities and show that decreases in propensities

can occur due to epistasis, challenging claims that such a trend must have adaptive origins.

In Chapter 4, I conduct a literature review on nonadaptive phenomena that lead amino

acid preferences to change over time. Finally, in Chapter 5, I investigate the evolutionary

response to destabilizing substitutions across and within protein structures. I find that

destabilizing substitutions at buried residues often require a longer time for the effects to

be mitigated than destabilizations at exposed sites. I end the dissertation by discussing the

implications of epistasis on protein evolution and future research directions.
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CHAPTER 1

INTRODUCTION

The whole organic world is the result of innumerable different combinations

and permutations of relatively few factors . . . These factors are the unit which

the science of heredity has to investigate. Just as physics and chemistry go

back to molecules and atoms, the biological sciences have to penetrate these

units in order to explain . . . the phenomena in the living world.

—Hugo de Vries

The diversity in nature is awe-inspiring, from tiny microbes to enormous whales.

Despite differences in their size, shape, life span, and almost every aspect of their existence,

all living things utilize the same biochemical system as genetic material. How, then,

does this diversity arise? The objective of evolutionary biologists is to propose and

investigate a mechanistic explanation for the intricate characteristics of different living

forms. This chapter, with brevity in mind, covers the historical background of evolution by

natural selection—from Darwin’s Origin through the Synthesis and ending with modern

computational evolutionary biology. In this chapter, I also introduce, in detail, two

modelling frameworks used throughout the remainder of the dissertation: the Mutation-

Selection (MutSel) framework and the stability-informed framework. This introduction

sets the stage for the chapters that follow.

1



1.1 The origin of the synthesis

The essence of evolution by natural selection is commonly attributed to Charles Darwin

(1809-1882)1. In his famous book On the Origin of Species by Means of Natural Selection

(1859), or Origin in short, Darwin laid down the foundations for evolution by natural

selection. With our modern-day vantage point, the theory appears intuitive: when animals

reproduce, they sometimes produce variants that differ from the parents. Because of

competition over scarce resources, individuals that are better adapted for an environment

are “naturally selected”. In other words, they are more likely to survive and leave viable

offspring. This process is gradual, occurring slowly over time. Nevertheless, it is this

process that produces the adaptive complexity of living forms that surround us today.

The basic elements of evolution by natural selection embody three principles, as

summarized by Lewontin (1970):

1. Phenotypic variation: Individuals in a population differ in morphology, physiology,

and behaviour.

2. Differential fitness: Phenotypically different individuals have different rates of

survival and reproduction.

3. Heritability: Similarity in phenotype between parents and offspring.

At the time, Darwin’s theory was largely conceptual since the molecular underpinnings

were not yet discovered—How do phenotypic differences arise? How are organismal

attributes transmitted to offspring? In 1865, six years after Darwin’s Origin, Gregor

Mendel (1822-1884) presented work at the Natural Science Society in Brno, demonstrating

the existence of heritable traits (Mukherjee, 2016). Unfortunately, for decades, his work

went largely unnoticed2. Mendelian genetics was not linked to Darwinian evolution until

its rediscovery in the early 1900s by de Vries (1848-1935), Bateson (1861-1926), and

Mogran (1866-1945)3. Their works laid the foundations for the discipline we now call
1The basic concept of biological evolution predates Darwin by almost two millennia. The pre-Socratic

Greek philosopher Anaximander (610 - 546 BC) believed in a progression of animal forms, hypothesizing
that life originated in the sea.

2In the same meeting, and soon after Mendel’s presentation, a botanist discussed the Origin and Darwin’s
theory of evolution. However, the link between Mendel’s and Darwin’s work was not then appreciated.

3Despite being informed of Mendel’s work, de Vries pointedly neglected to cite it in his publication on
plant hybrids. On the other hand, Bateson was an ardent champion of Mendel. For this, he was nicknamed
“Mendel’s bulldog”.
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Genetics—a term coined by Bateson in 1905 (Richmond, 2001). (De Vries also coined a

now recognizable term of his own, mutation.) Rather than champion Darwin’s theory of

evolution, the Mendelian mechanisms of inheritance drove it to the brink of extinction. For

decades to follow, evolutionary biologists partook in debates regarding the relative roles of

mutations (mutationist school4) and natural selection (selectionist school) in explaining the

variation in organismal forms. The mutationists asserted that most organismal differences

are attributable to mutations alone and rejected Darwin’s doctrine of natura non facit saltum

(Stoltzfus and Cable, 2014). The selectionists maintained that the gradual accumulation

of mutations leads to phenotypic differences on which natural selection acts. The former

quickly gained ground, and the latter dwindled in numbers.

It was not until the development of rigorous mathematical models by Ronald Fisher

(1890-1962), John B. S. Haldane (1892-1964), and Sewall G. Wright (1889-1988), among

others, that mutational theory, the laws of inheritance, and natural selection were integrated

into a unified framework. Their works during the mid-twentieth century led to the birth

of the modern synthesis—coined by Julian Huxley (1887-1975) in his 1942 book Evolu-

tion: The Modern Synthesis (see Mayr and Provine (1981) for a relatively more recent

review). Several ideas developed in this period are essential for the work completed in this

dissertation—such as the notions of random genetic drift and the effective population size.

The size of a population has significant consequences for its evolutionary dynamics.

Its importance was adequately emphasized by Wright (1931): “There remains one factor

of the greatest importance in understanding the evolution of a Mendelian system. This is

the size of the population”. Due to finite population sizes, gene frequencies will fluctuate

over time merely by chance. Wright referred to this phenomenon as random genetic drift

(Wright, 1931). Random drift is more pronounced in smaller populations, and its influence

dwindles as population size increases. This leads to the question: how should the size of a

population be defined? The rate of genetic drift is proportional to the effective population

size, Ne, rather than the census population size, Nc. The effective population size is a

theoretical quantity that can be conceptualized as the size of an idealized population that

would exhibit the same intensity of genetic drift as the natural population. In an idealized

population, Ne will equal Nc. The definition of an idealized population assumes:

1. an equal number of breeding males and females

4Also called, Mutationstheorie, or mutation theory, by de Vries (De Vries, 1919).
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2. that the population is panmictic (exhibiting random mating)

3. an equal expectation of offspring for each indivudual

4. that the number of breeding individuals is constant

Violations in these assumptions, which are common in natural populations, leads to

Ne < Nc. The effective population size Ne is hence the parameter of interest when

modelling the evolutionary process.

Of underlying importance during this period was the calculation of the probability

of ultimate success (i.e., fixation) or elimination of a mutant. In 1927, Haldane, using a

method developed by Fisher (1922), resolved that the probability of fixation of a beneficial

mutation with selective advantage s will be approximately 2s. Alternatively, Wright (1931)

and Fisher (1958) estimated that if a mutation has little effect on fitness, then the probability

of its eventual fixation in a diploid population will be 1/2Ne. In 1962, Motoo Kimura

unified the different probability estimates, accounting for arbitrary dominance regimes and

fluctuating selection coefficients, such that the probability with which a mutant j becomes

fixed in a diploid population with wildtype variant i is given by

Pfix =
1− exp(−2 sij)

1− exp(−4Nesij)
(1.1)

where Ne is the effective population size, sij = fj − fi is the relative fitness effect of the

mutant, and fj is the fitness of mutant j. In equation (1.1) Ne acts as a tuning parameter

for the relative intensities of selection and random genetic drift. If a mutation is selectively

neutral (sij ≈ 0 ), then the probability of it going to fixation just by random drift is equal

to 1/2Ne, as expected from Wright (1931) and Fisher (1958). For a positive sij and a

very large Ne, the probability of fixation of the beneficial mutant will be equal to 2sij ,

Haldane’s result. Lastly, deleterious mutations, where sij < 0, are selected against such

that the probability of fixation is less than that of a neutral mutation.

Darwin was a self-proclaimed mathematical novice. “I attempted mathematics... but

I got on very slowly. The work was repugnant to me”, he states in his autobiography

(Darwin, 1958). Yet he was fully aware of its merits: “I have deeply regretted that I did

not proceed far enough at least to understand something of the great leading principles

of mathematics; for men thus endowed seem to have an extra sense” (Darwin, 1958).

It was through the works of scientists “thus endowed” that evolutionary theory, by the

4



mid-twentieth century (over a century after the first publication of the Origin), had come

to be grounded in mathematical rigour.

1.2 Sequence space and epistasis

A key component of evolution by natural selection is, as stated earlier, differential fitness,

where phenotypic differences among individuals lead some to survive and reproduce

more frequently than others. However, in practice, the effects of mutations on organismal

fitness are complex and challenging to measure (see Chapter 4 for further discussion).

Alternatively, the fitness of a protein molecule is more directly amenable to precise

measurements (e.g., enzymatic activity, binding affinity, folding stability). All else being

equal, the fitness of an individual carrying a particular mutant protein will correlate with

the fitness of the protein.

In 1970, John Maynard Smith presented an intuitive analogy to protein evolution,

a word game where the objective is to move from one meaningful word to another by

changing a single letter at a time. Imagine, for example, a path between WORD and GENE.

One such path is WORD → WORE → GORE → GONE → GENE; this was the example

trajectory provided by Maynard Smith (1970). The parallels with protein evolution are:

each meaningful word represents a functional protein; each letter, an amino acid; and every

letter change, a substitution.

This simple analogy reveals various salient aspects of protein evolution. First, what

constitutes a meaningful word? Must they be English words defined, for example, in the

Oxford English Dictionary? Whatever this requirement may be, it would correspond to

the sequence-level selective pressures acting on proteins. Such a sequence-level fitness

function maps sequences to fitness values (or words to meaning). The space of all possible

sequences of a given length L is immense and multi-dimensional. The space contains 20L

possible amino acid sequences and every sequence has 19 × L single-step neighbours.

Multi-dimensional spaces are complex and produce many counter-intuitive phenomena

(Gavrilets, 2003, 2004). While various advancements have been made on this front (e.g.,

Steinberg and Ostermeier (2016)), they remain challenging to work with and interpret.

A more tractable approach is to define the fitness landscape at an individual position

in a word or a site in the protein (Bazykin, 2015). These site-specific fitness landscapes

are fully defined by a vector of length 20 representing the fitness value of each amino
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acid or a vector of 26 for every letter in the word game analogy. During the path from

WORD to GENE, the fitness landscape at the first position changes as the background

sequence varies. Letters that produce meaningful words in one background fail to do so in

another (e.g., WORE and WONE). Similar site-specific dynamics occur throughout protein

evolution. The dependency of the fitness effect of a mutation on the genetic background is

referred to as epistasis5.

Sequence space is rich beyond measure: for an average-sized protein of length 300,

the total number of sequences (20300) is vaster than all the stars in the observable universe6.

Evolution threads paths through sequence space leading to a diversity of life forms. Can

we decipher from these sequences the evolutionary past? What do the observed patterns of

substitutions indicate? To address these questions, we must rely on plausible models of

sequence evolution.

1.3 Models of sequence evolution

Probabilistic models that characterize evolutionary dynamics have been valuable in evolu-

tionary biology. The process of sequence evolution is Markovian in nature; the probability

of a mutation, and ultimately fixation (or elimination), depends only on the current state

and not on past states. Therefore, continuous-time Markov chains are commonly used to

model the evolutionary process (e.g., Muse and Gaut (1994); Goldman and Yang (1994);

Yang and Nielsen (2002); Kosakovsky Pond and Frost (2005)). Markov chains can model

the evolution of particular codon positions in a protein (e.g., Goldman and Yang (1994)), or

nucleotide positions within a codon position (e.g., Jukes and Cantor (1969)), or at a larger

scale, the evolution of the entire protein sequence (e.g, Youssef et al. (2020)). Markov

models are stochastic, memoryless processes that describe transitions between different

states.

Jukes and Cantor (1969) presented a simple Markov model, referred to as JC69, which

assumes that all nucleotides are equally likely, and that every nucleotide has the same rate

of changing into any other nucleotide. A slightly more complex nucleotide model was

presented by Hasegawa et al. (1985), referred to as HKY85, which accounts for differences

5The term epistasis was also coined by William Bateson in 1909.
6One of the earliest estimates of the number of stars in the universe comes from Archimedes (287-212

BC), the author of the The Sand Reckoner. He estimated that 1063 grains of sand are required to fill the
universe, that is 1083 atoms; a number eerily close to our estimates today (1078 − 1082).
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in nucleotide frequencies {πA, πC , πT , πG} and for differences in the rates of transition

within purines (A ↔ G) and within pyrimidines (T ↔ C) versus the rates between the

purines and pyrimidines (A,G ↔ T, C).

The transition rates between states in a Markov chain are given by an instantaneous

rate matrix Q. This matrix is populated by elements qij describing the transition rates from

state i to state j in an infinitesimally small amount of time. For example, the transition

matrix specifying the HKY85 model is given by:

Q =

⎛
⎜⎜⎜⎜⎜⎝

. πC πT κπG

πA . κπT πG

πA κπC . πG

κπA πC πT .

⎞
⎟⎟⎟⎟⎟⎠ (1.2)

where κ is the transition-transversion rate ratio, πj is the stationary frequency of nucleotide

j, and the diagonal elements qii = −∑
j qij are specified such that the row sum equals

zero. The Q-matrix fully defines the dynamics of the Markov chain.

The JC69 (Jukes and Cantor, 1969) and HKY85 (Hasegawa et al., 1985) models are

two examples of DNA-level (i.e., having nucleotide states) Markov models. Such models

are fully characterized by a 4 × 4 Q-matrix, see for example equation (1.2). Codon or

amino acid models can analogously be specified by a 61× 61 (where each state represents

a sense codon) or 20 × 20 transition rate Q-matrices, respectively. The transition rates

between states in a Markov model can be informed by population genetics parameters.

The following section describes one such application, referred to as the mutation-selection

(MutSel) framework (Halpern and Bruno, 1998).

1.3.1 The mutation-selection (MutSel) framework

The MutSel framework assumes an idealized Wright-Fisher population with fixed effective

population size (Ne) and a weak mutation-strong selection regime such that a mutation is

either fixed (or eliminated) before the introduction of a second mutant into the population

(Fisher, 1922; Wright, 1931). The transition rates, qij , between states are equal to the

product of the rate of a novel mutation j occurring in the population, 2Neμij , and its

subsequent rate of fixation, Pfix:

qij ∝ 2NeμijPfix (1.3)
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where μij represents the mutation rate from variant i → j, and Pfix is defined from

population genetics theory using equation (1.1).

Throughout this dissertation, I modelled the evolutionary process as occurring be-

tween protein sequences. The state-space of a sequence model is made up of 20L possible

states where L is the length of the protein. It is impossible to fully define the 20L × 20L

Q-matrix for all but the smallest proteins. Instead, given that the process is currently

at sequence i, it is feasible to calculate the transition rates to all single-nucleotide step

neighbouring sequences7. To model the process of sequence evolution, the probability

of a transition into another state j is calculated as Pij = qij/
∑

j �=i qij . At each time step,

the substitution to the next state is determined by a random draw from a multinomial

distribution with probabilities Pij .

Grounded in population genetics theory, the MutSel framework is a powerful tool for

exploring evolutionary dynamics. Nevertheless, its plausibility as a model for generating

sequences is contingent upon appropriate definitions of the underlying parameters (e.g.,

selection coefficients, sij). To assign fitness values to amino acid sequences, I used a

stability-informed biophysical model.

1.3.2 The stability-informed model

Proteins are biomolecules that must obey the physical laws of our universe. Over the last

decade, biophysical models of proteins have been useful for understanding the evolutionary

dynamics of proteins (e.g., Williams et al. (2006a); Goldstein (2011); Pollock et al. (2012);

Shah et al. (2015); Youssef et al. (2020)). Most proteins are marginally stable, teetering on

the verge of unfolding. The marginal stability of proteins was first interpreted as evidence of

selection favouring lower stability values, allowing the protein greater flexibility to change

configurations (DePristo et al., 2005). However, using a stability-informed evolutionary

model, it became evident that marginal stability emerges due to the interplay between

mutation, selection, and drift (Goldstein, 2013). Hence, marginal stability is an expected

emergent property even if evolution does not actively favour it. Biophysical models

of protein evolution have also lead to a deeper understanding of intricate evolutionary

dynamics, leading to characterizations of phenomena such as contingency (Shah et al.,

2015), entrenchment (Shah et al., 2015), evolutionary Stokes shift (Pollock et al., 2012;

7Since each amino acid is encoded by three nucleotides, an amino acid sequence of length L is encoded
by a nucleotide sequence of length 3L. Then, the number of single-nucleotide step neighbours is only 3×3L.
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Goldstein and Pollock, 2017), and more recently, the evolutionary anti-Stokes shift. These

phenomena will be discussed in detail in Chapter 3.

To illustrate how stability is calculated, consider a protein of length L with sequence

S = {a1, . . . , ah, . . . aL}, where ah specifies the amino acid at position h. The amino

acid sequence of a protein influences its physicochemical properties (such as the protein’s

mechanism of action, its structure, and its stability). The linear amino acid polypeptide

chain defined by S folds into a unique three-dimensional structure kF within the aqueous

solution of a cell. The calculation of stability is easiest to illustrate in the case of a simple

two-state folding system, where the protein molecule is either in the folded (F ) or unfolded

(U ) configurations, or macrostates. A macrostate defines a state with macroscopically

measurable parameters (e.g., temperature, volume, pressure). Each macrostate is composed

of numerous microstates, defining the positions of individual particles. As an analogy,

consider the diagram presented in figure 1.1A. Suppose that the measurable parameter

is the number of black (or white) boxes. There are five possible macrostates, having 0,

1, 2, 3, or 4 black boxes. The 2-black box macrostate can be obtained from six different

microstates (i.e., the different arrangement of black boxes). For molecules, the boxes in the

analogy described above correspond to individual atoms or particles. Different orientations

of atoms result in numerous microstates for any given molecule.

The stability, ΔG, of a sequence is defined as the difference in free energy between

the folded EF and unfolded EU macrostates:

ΔG = EF − EU (1.4)

It is widely accepted that the native folded state corresponds to the free energy minimum

(Kaffe-Abramovich and Unger, 1998). Therefore, the energy required to maintain the

sequence in the correctly folded native state of a protein (EF ) is lower than the energy in

an unfolded configuration (EU ). As such, protein stability, ΔG, is usually negative and the

process of folding occurs spontaneously (figure 1.1B).

The free energy Ek associated with sequence S in a given structure k can be approxi-

mated as the sum of pairwise energy potentials for amino acids in contact in the tertiary

structure,

Ek =
∑
x<y

εMJ(a
x, ay) CMx,y

k (1.5)

9



Microstates:

Folded UnfoldedMacrostates:

A B

Fr
ee

 e
ne

rg
y

G

Figure 1.1: Illustration of thermodynamic principles of protein stability calculations. (A)
An analogy for the description of macrostates and microstates. Macrostates represent any
system with measurable macroscopic properties (e.g., temperature, volume). Alternatively,
microstates define the position of individual particles. For each macrostate, there is a large
number of corresponding microstates. In this analogy, the macrostate can be defined as
the number of black (or white boxes). There are five different macrostates: zero black
boxes and 4 white {0B, 4W}, or one black box and 3 white {1B, 3W} and so on. Consider
the {2B, 2W} macrostate. There are a total of six different microstate configurations
that yield two black and two white boxes. With regards to proteins, the two macrostates
are the folded and unfolded configurations. The folded state corresponds to the known
native three-dimensional structure of the protein. Alternatively, there are a large number of
unfolded configurations. (B) Protein stability is calculated as the difference in free energy
between the folded EF and unfolded EU states.

where εMJ are the contact potentials determined by Miyazawa and Jernigan (1985), and

CMk is the contact matrix specifying interactions between sites in structure k such that

CMx,y
k = 1 if site x and y are in contact and 0 otherwise8. The contact potentials εMJ are

based on a statistical analysis of known protein structures (Miyazawa and Jernigan, 1985).

Due to the nature of the statistical analysis, these potentials represent potentials of mean

force and implicitly include hydrophobic interactions and other effects of the solvent.

The free energy associated with the folded state EF can be calculated using equation

(1.5), with k = kF as the known native structure. Usually, however, there is not a

single unfolded configuration. It is intractable to characterise the entire set of possible

unfolded structures, making it challenging to estimate EU directly. Instead, a subset of

structures {kU} is selected to characterise the distribution of thermodynamic properties of

the ensemble of unfolded microstates. Then, the free energy in the unfolded macrostate is

8Sites are considered to be in contact if the Cβ atoms are within 7Å. If the amino acid present is glycine,
distance is calculated with reference to the Cα atom.
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given by the Helmholtz free energy equation:

EU = −β−1 lnZU (1.6)

where β = 1/kT , k is the Boltzmann constant, T is absolute temperature, and ZU is the

partition function over the ensemble of unfolded microstates. Assuming that the free energy

of the ensemble of unfolded structures approximately follows a Gaussian distribution,

{kU} is used to estimate the mean Ē and standard deviation ΔE2. These parameters define

the distribution, ρ(E), of free energies, E, over unfolded states:

ρ(E) =
1√

2πΔE2
exp

[−(E − Ē)2

2ΔE2

]
(1.7)

The partition function sums over all unfolded energies which is equivalently a sum of all

possible energies, weighted by how frequently they arise:

ZU =
Nu∑
i=1

exp(−βEi) (1.8)

≈ NU

∫
ρ(E) exp(−βE)dE (1.9)

= NU exp(
1

2
β2ΔE2 − βĒ) (1.10)

where NU is the number of unfolded microstates. The stability of a sequence S can then

be rewritten as

ΔG = EF + β−1 lnZU (1.11)

= EF − Ē +
1

2
βΔE2 + β−1 lnNU (1.12)

A common assumption in biophysical models of protein evolution is that fitness is

equal to the proportion of correctly folded proteins at thermodynamic equilibrium. From

thermodynamic theory, the probability of a system (or molecule) occupying a macrostate

m is described by the Boltzmann distribution:

Pm =
e−βEm∑
n e

−βEn
(1.13)
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where Em is the free energy associated with being in macrostate m, and the sum over n

represents all macrostates. In the case of a two-state folding system, the probability of

observing a sequence in the native structure at thermodynamic equilibrium will be

PF =
e−βEF

e−βEF + e−βEU
(1.14)

=
e−βEF

e−βEF + e−βEU

(eβEU

eβEU

)
(1.15)

=
e−βΔG

e−βΔG + 1
(1.16)

This framework allows us to estimate the stability of a sequence in a given structure.

Therefore, the stability-informed model acts as a mapping between amino acid sequences

and fitness values (analogous to the role of the Oxford English Dictionary in Maynard

Smith’s word game analogy). We can, therefore, use this framework in conjunction with

the MutSel model for simulations of the evolutionary process that are grounded in the

formalisms of thermodynamics and population genetics.

1.4 Thesis outline

In this dissertation, I combine the stability-informed and MutSel frameworks to simulate

hypothetical evolutionary trajectories and study the emerging dynamics. I begin by

validating the stability-informed model by comparing predicted properties with patterns

in natural data (Chapter 2). Then, I investigate the impact of stability-mediated epistasis

on substitution rates. I find that epistasis tends to inflate the rate at which substitutions

accumulate compared to the rates under site-independent evolution. Nevertheless, inferred

rates from commonly used models (e.g., ω-based models) are not systematically biased

due to epistasis: the accuracy of substitution rate inference is comparable when alignments

are generated with and without epistasis.

In Chapter 3, I investigate how the propensity for a resident amino acid changes over

time. Through this analysis, I defined a new phenomenon, the evolutionary anti-Stokes

shift where the preference for the resident amino acid decreases as the protein evolves.

This observation challenges previous claims that epistasis cannot explain such reductions

in preferences (Popova et al., 2019; Stolyarova et al., 2020). I show that in the absence

of an adaptive change (i.e., given a constant environment) the number of sites for which
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the propensity of the resident amino acid increases is balanced by the number of sites for

which the propensity of the resident amino acid decreased. I also observe that epistasis

reduces the magnitude of propensity shifts through a significant negative auto-correlation

in propensity changes. Increases in propensities tend to be followed by decreases (and vice

versa).

In Chapter 4, I perform a comprehensive review of theoretical and experimental work

related to nonadaptive changes in site-specific fitness landscapes. Analysis of natural

sequence alignments often show evidence of declining levels of homoplasy (convergence,

reversions, and rates of parallel evolution) with divergence time. The levels and trends in

empirical data are inline with expectations from epistatic models. Furthermore, I report on

results from site-directed mutagenesis, and available deep mutational scanning datasets.

Experimental studies reveal that changes in site-specific fitness landscapes are often minor

in magnitude, even over long evolutionary time scales. Importantly, this review identifies

evidence in the literature in support of a balance in the proportion of sites for which the

propensity of the resident amino acid increases or decreases.

Finally, in Chapter 5, I investigate how proteins, and sites within proteins, adjust to

destabilizing substitutions. I find differences in the number of compensatory substitutions

that are required to adjust for the destabilization among proteins and across sites within

a protein. I report on the structural features that explain the disparities in response to

destabilizations. Together, the chapters in this thesis advance our understanding of the

implications of stability and epistasis on protein evolution.
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CHAPTER 2

CONSEQUENCES OF
STABILITY-INDUCED EPISTASIS FOR
SUBSTITUTION RATES

This work was published previously in the journal Molecular Biology and Evolution

(Youssef et al., 2020).

2.1 Abstract

Do interactions between residues in a protein (i.e. epistasis) significantly alter evolutionary

dynamics? If so, what consequences might they have on inference from traditional

codon substitution models which assume site-independence for the sake of computational

tractability? To investigate the effects of epistasis on substitution rates, I employed a

mechanistic mutation-selection model in conjunction with a fitness framework derived

from protein stability. I refer to this as the stability-informed site-dependent (S-SD) model,

and developed a new stability-informed site-independent (S-SI) model that captures the

average effect of stability constraints on individual sites of a protein. Comparison of S-SI

and S-SD offers a novel and direct method for investigating the consequences of stability-

induced epistasis on protein evolution. I developed S-SI and S-SD models for three natural

proteins and showed that they generate sequences consistent with real alignments. The

analyses revealed that epistasis tends to increase substitution rates compared to the rates

under site-independent evolution. I then assessed the epistatic sensitivity of individual

sites and discovered a counterintuitive effect: highly connected sites were less influenced

by epistasis relative to exposed sites. Lastly, I show that, despite unrealistic assumptions,
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traditional models perform comparably well in the presence and absence of epistasis, and

provide reasonable summaries of average selection intensities. While epistatic models are

critical to understanding protein evolutionary dynamics, epistasis might not be required

for reasonable inference of selection pressure when averaging over time and sites.

2.2 Introduction

Most proteins must fold into a native structure in which they are moderately stable before

they are able to perform their biological function. Protein stability depends on the sequence

of amino acids and their interactions in the folded three-dimensional structures. Because of

these interactions, evolutionary selective constraints to maintain adequate stability result in

epistatic dependencies between residues. Specifically, epistasis manifests as a dependency

in the fitness effect of a mutation on the background protein sequence in which it arose.

For example, let fh
a (S) be the fitness of the protein provided amino acid a is occupying

site h in the context of background sequence S. Then, F h(S) = 〈fh
1 (S), ..., f

h
20(S)〉 is

the site-specific vector of amino acid fitness values specifying the fitness landscape at

site h. Following a substitution at another position in the protein, so that the background

sequence changes from S to X , the fitness of the same amino acid will subsequently

change, fh
a (S) 
= fh

a (X). Therefore, in the presence of epistatic dependencies the fitness

landscape at a site is subject to fluctuations as substitutions occur at other sites (figure

2.1A). Stability constraints typically result in global epistasis, meaning that a change in

the incumbent amino acid at one site induces shifts in the fitness landscapes at many, often

all, other sites in the protein (Starr and Thornton, 2016). While such interdependencies

inevitably occur, the magnitude and frequency of these shifts, and their impact on protein

evolution, remain controversial.
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Figure 2.1: Site-specific fitness landscape dynamics under epistatic (A) and site-
independent (B) models. (A) Epistasis results in a changing site-specific fitness landscape
as substitutions occur at other positions in the protein. (B) Site-independent evolution
implies a static (constant) fitness landscape.

Using extensive computational experiments, Pollock et al. (2012) found that stability-

induced epistasis results in frequent and substantial shifts in amino acid fitness landscapes.

To the contrary, Ashenberg et al. (2013) used computational and experimental approaches

and reported that while stability-induced fluctuations in site-specific amino acid fitness

landscapes do occur, they are relatively minor in magnitude and are therefore inconse-

quential with regards to long term evolutionary dynamics. This controversy has spurred

multiple follow-up experiments, finding support for both claims and little consensus (Shah

et al., 2015; Risso et al., 2015; Ferrada, 2019; Starr et al., 2018). It remains unclear if and

how stability-induced epistasis influences protein evolution.

Models used to infer evolutionary parameters from natural protein alignments com-

monly assume site-independence and other simplifying assumptions (e.g. time-stationary

substitution rates, and low levels of among-site rate heterogeneity) for the sake of compu-

tational tractability. In this study, I focus on the widely used codon substitution models

which infer selection pressure as ω, the normalized ratio of nonsynonymous substitutions

to the ratio of synonymous substitutions (Goldman and Yang, 1994; Muse and Gaut, 1994);

I refer to these as ω-based models. Natural proteins evolve under complex evolutionary

dynamics that are not entirely captured by traditional ω-based models (e.g. epistatic in-

teractions between sites). If epistasis between residues in a protein does have a dramatic

effect on protein evolution, then the validity of inference from site-independence models

might be negatively impacted.

Does epistasis substantially influence the rate at which proteins evolve? And if so,
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how reliable are inferences from traditional ω-based models which assume that sites evolve

independently? Addressing these questions are the main objectives of this chapter. To do

this, I model the evolutionary process from first principles of population genetics theory

using the mutation-selection (MutSel) framework (Halpern and Bruno, 1998; Yang and

Nielsen, 2008). Unlike ω-based models, MutSel models account for differences in amino

acids fitness values and allow for more realistic levels of among-site rate heterogeneity by

assigning each site a unique fitness landscape (F h). MutSel frameworks are commonly

used as a method for simulating plausible evolutionary dynamics (Rodrigue et al., 2010;

Spielman and Wilke, 2015; Jones et al., 2017, 2018, 2020; Ashenberg et al., 2013).

Nevertheless, these are site-independent models and therefore do not directly model the

dynamics of epistasis. With appropriate fitness values, they can in theory be used to model

the marginal effects of stability and/or other selective pressures on a site. The challenge

then lies in determining plausible site-specific fitness landscapes.

Several ways of calculating amino acid fitness values have been proposed. For

example, Spielman and Wilke (2015) derived amino acid fitness values based on empirical

site-specific frequencies from large alignments of homologous proteins. Alternatively,

Jones et al. (2018) assigned amino acid fitness values such that the estimated probability

density function of the scaled fitness effects (sij = 2Ne(fj–fi) for amino acids i and j

and effective population size Ne) matches the distribution inferred from empirical data.

Hereafter, these approaches are referred to as site-wise MutSel. Under the site-wise MutSel

formulations, site-specific fitness landscapes average the selective pressure acting on a

site, assuming site-independent evolution, and therefore time-stationary fitness landscapes

(figure 2.1B). Changes in site-specific fitness landscape are interpreted as a change in

selection pressure (either due to a change in environment or a change in protein function).

Determining fitness landscapes has also been addressed mechanistically by com-

bining the MutSel approach with biophysical models of protein folding where fitness

values depend on protein stability or the proportion of correctly folded proteins at thermo-

dynamic equilibrium (Goldstein and Pollock, 2016; Pollock et al., 2012; Goldstein and

Pollock, 2017; Ashenberg et al., 2013). While comparable at first glance, the biophysical

approaches differ extensively from the site-wise MutSel applications. Importantly, the

biophysical models account for temporal variation in site-specific fitness landscapes that

emerges as a consequence of global stability-induced epistasis (Figure 2.1A). Accounting
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for these temporal dynamics is essential for understanding how epistasis influences protein

evolution. While the evolution of natural proteins is certainly shaped by additional struc-

tural and functional constraints, for most proteins, proper folding into a native structure is

prerequisite to being able to carry out their biological function.

To investigate the influence of epistasis on protein substitution rates, I use the MutSel

evolutionary model in conjunction with a biophysical model of protein folding. I refer

to this as the stability-informed site-dependent (S-SD) model since stability calculations

inherently take into account epistatic interactions between sites. I develop an analogous

stability-informed site-independent (S-SI) model where proteins evolve under equivalent

stability mediated selection pressures but having independent and constant fitness land-

scapes (figure 2.1B). Specifically, from each S-SD evolutionary simulation, I calculated

the average fitness landscapes at each site over different background sequences. I then

use these site-specific average landscapes as the unique and constant landscapes for each

site in the S-SI simulations (figure 2.2). Therefore, for each S-SD alignment I generated

an analogous S-SI alignment under the same average selection constraints but without

the temporal dynamics characteristic of epistasis. Therefore, the S-SI versus S-SD model

comparison allows for a novel and direct way of investigating the influence of stability-

induced epistasis on evolutionary dynamics. To permit comparison with models that do not

account for stability, I include a third independent and identically distributed across sites

framework where site-specific fitness landscapes are derived from the C-series frequency

profiles (Le et al., 2008); I refer to this as the C-series site-independent (C-SI) model.

The conditions of the simulations are derived from multiple sequence alignments for

three natural protein-coding genes with PDB structures 1qhw, 2ppn, and 1pek. The three

protein structures differ in important ways. The 2ppn protein folds following a two-state

folding process and therefore conforms to one of core thermodynamic model assumptions.

The 1qhw structure was used to maintain consistency with previous studies which used the

same structure (Goldstein and Pollock, 2016; Pollock et al., 2012; Goldstein and Pollock,

2017). Lastly, the 1pek protein is comparable in length to the 1qhw protein, however,

the 1pek protein is more densely packed. I begin by validating the stability-informed

models and show that simulated alignments are phenomenologically comparable to the

real protein alignments based on various metrics. I then use the S-SI and S-SD models

to investigate the difference in dynamics when sites evolve with epistatic interactions or
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Figure 2.2: Derivation of the stability-informed site-independent (S-SI) model. First, I
generated multiple sequence alignment (MSA) under stability-informed site-dependent
model (S-SD; see Methods section for details). Then, at each site I calculated F h(S) =
〈fh

1 (S), ..., f
h
20(S)〉, the site-specific fitness vector where fh

a (S) is the fitness of amino acid
a at site h given background sequence S. This was repeated across all extant sequences
S1, ..., SN . Next, I calculated F̄ h the average fitness landscape at site h across background
sequences. I generate under S-SI with F̄ h as the independent and constant fitness land-
scapes (see Methods section for details). N is the number of taxa in the protein-specific
alignment (14, 14, and 12 for proteins 1qhw, 2ppn, and 1pek), and L is the number of sites
in the protein-specific alignment (300, 107, and 279 for proteins 1qhw, 2ppn, and 1pek).
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independently. I find that epistasis results in minor elevations in substitution rates over the

whole protein. However, site-wise analysis reveals that the impact of epistatic interactions

on substitution rates can be substantial at individual sites. I describe a mechanism whereby

epistasis increases substitution rates compared to the rates under site-independent evolution.

Lastly, I report that while models that treat site-wise variation in ω as a random variable

underestimate the degree of among-site rate heterogeneity, the estimated ω rates tend to

accurately identify the most common substitution rates across sites. Therefore, despite

their simplicity, ω-based inference models preformed comparably well in the presence and

absence of epistasis.

2.3 Results

The objective of this chapter is to (1) investigate how epistasis influences the rates at which

proteins evolve (measured by the number of substitutions), and (2) the impact of epistasis

on inference procedures (in particular with regards to ω rate estimation). To this end, I

generated sequence alignments using three simulation models: C-series site-independent

(C-SI), stability-informed site-independent (S-SI) and stability-informed site-dependent (S-

SD). The simulation models differ in how fitness values are calculated (stability-informed,

S-, or estimated from C-series profiles, C-) and whether they model sites as evolving

independently or with epistatic interaction (-SI vs -SD, respectively).

For three protein-coding genes with known protein structures (PDB code: 1qhw, 1pek,

and 2ppn), I obtained multiple sequence alignments (MSA) and estimated a corresponding

phylogenetic tree (figure 2.3). I fit the MSA and phylogenetic tree to the M3 (k=3)

codon substitution model to estimate protein-specific mutation parameters (table 2.1).

Then, I generated fifty protein-specific alignments under C-SI, S-SI, and S-SD, using the

corresponding mutation parameters and phylogenetic tree. I fit the real and simulated

alignments to ω-based models and inferred the substitution rates. The ω-based codon

models use the maximum likelihood framework to estimate rate parameter ω conditioned

on a known phylogeny and multiple sequence alignment. Briefly, the M-series ω-based

models partition sites into c categories and estimate substitution rates ω1 < .. < ωc, and

proportions p1, ..., pc (Yang et al., 2000) (the models are described in more detail in the

Methods section). The validity of the simulation model can then be assessed by comparing

the inferred ω rates from the simulated and real alignments. I also calculated the true rates
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Figure 2.3: Phylogenetic trees for the 1qhw, 2ppn, and 1pek natural protein alignments.
The topologies were inferred using IQ-TREE (Nguyen et al., 2014) with ModelFinder
(Kalyaanamoorthy et al., 2017) and ultrafast bootstrapping (Minh et al., 2013). Branch
lengths, measured as the expected number of single nucleotide substitution per codon site,
were inferred from codon model M3(k=3) (Yang et al., 2000). This figure was generated
using iTOL (Letunic and Bork, 2021).

(dN/dS) directly from the generating models. Comparison between dN/dS and ω allows

us to assess the performance of the commonly used ω models. An outline of the methods

is provided in figure 2.4.

Table 2.1: Protein-specific mutation parameters estimated from the natural alignments for
proteins 1qhw, 2ppn, and 1pek under ω-based model M3 (k = 3).

1qhw 2ppn 1pek

κ 4.372 2.503 0.904
πA 0.205 0.268 0.188
πC 0.318 0.245 0.346
πG 0.280 0.294 0.258
πT 0.197 0.192 0.208
number of taxa 14 14 12
number of sites 300 107 279
Tree length 4.93 8.04 13.88
κ = transition-to-transversion ratio
πn = stationary frequency of nucleotide n
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Figure 2.4: Flowchart of method design. Real protein alignments were fitted to M-series
models to obtain maximum likelihood estimates of substitution rates (ω) and estimates
of protein-specific parameters (phylogeny, κ, πA, πC , πG, and πT ). The protein-specific
parameters were then used to generate fifty alignments under each of the simulation models:
C-series site-independent (C-SI), stability-informed site-independent (S-SI), and stability-
informed site-dependent (S-SD). The validity of the simulation model was assessed by
comparing the inferred ω rates from the simulated alignments to the ω estimates from
the corresponding real protein alignment. To assess the performance of inference models,
expected substitution rates, dN/dS, were calculated directly from the simulation models
and compared to the inferred ω values. Diagram modified from Spielman and Wilke
(2015).

2.3.1 Stability-informed models generate sequence alignments con-
sistent with real data

2.3.1.1 Evaluating the relationship between substitution rates and structural fea-
tures

Buried residues, towards the core of the protein, are more densely packed having higher

weighted contact number (WCN ) and lower relative solvent exposure (RSA) compared

to surface residues. Analyses of natural protein alignments often reveal significant correla-

tions between site-specific substitution rates and structural properties such as RSA and

WCN : buried sites tend to be more conserved with lower substitution rates compared to

exposed sites (Yeh et al., 2014; Shahmoradi et al., 2014; Marcos and Echave, 2015; Echave

et al., 2015). I was interested in assessing if any of the generative models recapitulate this

phenomenon. I measured the expected site-specific substitution rate (dNh/dSh) directly

from the fitness landscapes using equation (2.7) for C-SI and S-SI, and equation (2.8)

for the S-SD. I refer to dNh/dSh as the expected substitution rate throughout the study

since it represents the theoretically predicted substitution rate at evolutionary equilibrium

(Spielman and Wilke, 2015).
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Under both stability-informed frameworks (S-SI and S-SD) a significant positive

correlation was found between RSA and dNh/dSh, and a significant negative correlation

was found between WCN and dNh/dSh (figure 2.5). The correlations between RSA and

dNh/dSh were slightly higher for rates predicted under the S-SD framework compared to

the correlations based on the S-SI simulations. Similarly, correlations between WCN and

rates predicted under the S-SD were more negative compared to rates predicted under S-SI.

In contrast, the site-specific rates expected under the C-SI framework did not correlate

significantly with RSA or WCN .

Figure 2.5: Stability-informed models (S-SI and S-SD) reproduce empirically observed
correlations between substitution rates and structural features. Fifty alignments were
generated with three protein-specific parameters (1qhw, 2ppn, 1pek) under models C-series
site-independent (C-SI), stability-informed site-independent (S-SI), and stability-informed
site-dependent (S-SD). For each alignment I calculated the Pearson correlation between
the expected site-specific substitution rates dNh/dSh and relative solvent accessibility
(RSA, top panel), and weighted contact number (WCN, bottom panel). Plotted are the
mean correlation coefficients (and standard deviation) across trials.

Since the true substitution rates are unknown for the natural proteins, I used traditional
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codon models to infer substitution rates ω, measured as the normalized ratio of nonsyn-

onymous to synonymous substitutions. In order to assess the correlation between RSA or

WCN and substitution rates, I used the posterior mean ωh from the best fitting M-series

model as the site-specific rate estimate. The posterior mean ωh at a site is calculated as

(ω1 ×P h
1 ) + (ω2 ×P h

2 ) + ...+ (ωk ×P h
c ), where P h

c is the posterior probability of the site

corresponding to rate class ωc. I found a significant positive correlation between posterior

mean ωh and RSA in the 1qhw and 1pek real protein alignments (correlation coefficient

was 0.39 and 0.53 respectively; both p-values < 0.001); and a significant negative correla-

tion between rates and WCN (correlation coefficient was -0.35 and -0.43 for the 1qhw and

1pek alignments respectively; both p-values < 0.001). I found no significant correlation

between rates and structural properties (RSA or WCN ) for the 2ppn alignment. The small

size of the 2ppn gene, and the unusual mixture of long and short edges in its phylogeny

(figure 2.3), is likely problematic for posterior estimation of ω, which could explain the

insignificant correlations.

Various alternative methods have been developed to infer site-specific substitution

rates from multiple sequence alignments (e.g. Kosakovsky Pond and Frost (2005); Meyes

and vonHaeseler (2003); Massingham and Goldman (2005); Murrell et al. (2012)). How-

ever, the estimated rates are subject to large variability when the number of taxa is relatively

small. These methods are therefore not suitable to infer site-specific rates for the align-

ments used here (number of taxa = 14, 14, and 12 for 1qhw, 2ppn and 1pek). Using large

alignments (number of taxa = 300) of more than 200 proteins, Marcos and Echave (2015)

estimated the correlations between rates and RSA, and between rates and WCN . The

range of correlations coefficients between RSA and site-specific rates was between 0.26

and 0.75; the range of correlation coefficients between WCN and site-specific rates was

-0.19 and -0.73. The correlation coefficients I report for both rate measures (dNh/dSh and

posterior mean ωh) are within the range reported in Marcos and Echave (2015). Overall, I

found that the stability-informed models are able to recapitulate the empirically observed

correlations between structural properties and rates, which suggests that accounting for

folding stability captures important structural features that are absent in the stability-naı̈ve

C-SI framework derived from the widely used C-series profiles.
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2.3.1.2 Comparing inferred substitution rates and sequence variability between
real and simulated data

In order to use the simulations as a means of investigating the influence of epistasis on

rates, I needed to first verify that the generative models produce plausible substitution rates.

In other words, I needed to compare substitution rates from the generative models to the

rates experienced by real proteins. I fitted simulated and real alignments to codon model

M3(k = 2) to obtain estimates of substitution rates. A value of ω ≈ 1 is indicative of

neutral or nearly neutral evolution where nonsynonymous mutations are fixed at an equal

rate to synonymous mutations. An ω value < 1 is representative of purifying selection,

and ω > 1 is indicative of positive selection.

Analyses of the natural 1qhw, 2ppn and 1pek alignments revealed evidence for

purifying selection with ω1 < ω2 < 1 for all three natural alignments (figure 2.6). The

2ppn protein alignment had the lowest rate estimates with ω1 = 0.00 and ω2 = 0.09, and

respective proportions p1 = 0.67 and p2 = 0.33. The 1qhw and 1pek alignments had

comparable rate estimates with ω1 = 0.01 and 0.02, and ω2 = 0.30 and 0.24, respectively;

however, the proportion of sites belonging to the more stringent selection regime (ω1)

was approximately 10% higher for the 1qhw alignment (p1 = 0.71) compared to the 1pek

alignment (p1 = 0.64).

Alignments generated under the stability-informed models (S-SI and S-SD) were also

consistent with purifying selection, with ω1 < ω2 < 1 for all simulated protein-specific

alignments (figure 2.6, first row). The ω values inferred from the S-SI generated alignments

were on average significantly lower than rates estimated from the analogous protein-specific

S-SD simulations, and more consistent with the ω values estimated from the natural protein

alignments (figure 2.6; Bonferroni corrected p-values < 0.001 for all comparisons). With

the exception of the 1pek protein, the natural alignments were consistently inferred to be

under more stringent selection regimes with slightly lower substitution rates. For the 1pek

simulations, the ω2 estimate from the real alignment (ω2 = 0.24) alignment was higher than

the distribution of estimates from the S-SI alignments (figure 2.6, first row). Nonetheless,

the proportion of quickly evolving sites (p2) was lower in the real alignment (figure 2.6,

second row). This suggests that in the real 1pek protein a small proportion of sites were

evolving faster than expected under stability constraints. However, when considering all

sites in the alignment, by comparing the single rate estimated under M0, I found that

the rates were largely comparable: ω was 0.06 for the real 1pek alignment and the mean
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ω estimate over the fifty S-SI trials was 0.07. In contrast, rates inferred from the C-SI

simulations were significantly higher than estimates from the other simulations and from

the real proteins (Bonferroni corrected p-values < 0.001 for all comparisons). For the

C-SI generated alignments, the ω estimates were suggestive of neutral or weak selection

regimes (figure 2.6, first row).

Figure 2.6: Stability informed models (S-SI and S-SD) generate alignments consistent
with real data with respect to substitution rates and amino acid variability. For each of
three natural protein (1qhw, 2ppn, 1pek corresponding to the three columns), I generated
fifty protein-specific alignments under simulation models C-series site-independent (C-SI),
stability-informed site-independent (S-SI), and stability-informed site-dependent (S-SD).
The first row reports the estimated substitution rates ω1 (dark) and ω2 (light) inferred from
M3(k = 2). The ω distributions are of the fifty model- and protein-specific aignments;
the dots are the estimates from the real protein alignments. The second row reports the
proportion of sites in each rate category, p1 (dark) and p2 (light). The third row plots the
distributions of the number of amino acids observed per alignment site.

Consistent with having the highest ω rate estimates, the C-SI generated alignments

were the most variable with regards to the number of amino acids observed per site

(figure 2.6, third row). Across the three protein-specific simulations, the proportion

26



of fully conserved sites (one amino acid per site) were significantly lower than those

observed from the stability-informed simulations (Bonferroni corrected p-values < 0.001

for all comparisons). Furthermore, the average fraction of sites with ≥ 5 amino acids

were significantly higher. While the S-SD generated alignments were more conserved

than the analogous C-SI simulation, the alignments were more variable compared to the

corresponding S-SI simulations and real alignment. For the 1qhw and 2ppn alignments

generated under S-SD, the distributions of the number of amino acids per site were largely

consistent with the corresponding real protein alignment; however, the 1pek-specific S-SD

simulations were strikingly more variable (figure 2.6, third row). This is consistent with

results from Goldstein et al. (2015) which showed that under the S-SD model, the number

of amino acids per site is expected to increase with tree length (branch lengths are measured

as the expected number of single nucleotide substitutions per codon site). In general, I

found that the S-SI simulations were the most consistent with the real alignments. In

both the S-SI simulated alignments and the natural alignments (1) the most common site

pattern included only one amino acid for all protein alignments, and (2) the 2ppn proteins

were the most conserved compared to the 1qhw and 1pek proteins. The number of amino

acids per site was on average slightly more conserved for the real alignments than the

S-SI simulations which is consistent with the natural proteins being subject to additional

selective constraints beyond folding stability.

2.3.2 Epistasis increases substitution rates compared to site indepen-
dent evolution

2.3.2.1 Comparing expected substitution rates in the presence and absence of epistatic
interactions

Values of ω estimated from the S-SD alignments were on average higher than estimates

from the S-SI simulations (figure 2.6, first row). This suggests that epistasis, as modelled

in the S-SD framework, might lead to an increase in substitution rates compared to site-

independent evolution. However, it remains unclear if the observed increase in rates is a

genuine outcome of epistasis or a consequence of inference model misspecification. To

address this, I compared the expected site-specific substitution rates calculated directly

from the S-SI and S-SD generating frameworks. Consistent with the finding that epistasis

increased the inferred substitution rates, the distributions of expected dNh/dSh were more

positively skewed (higher) when epistasis was included (S-SD) for all three protein-specific
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simulations compared to the rates expected had sites evolved independently (S-SI; figure

2.7).

Rate distributions predicted from the S-SI model often displayed three peaks at

dNh/dSh values representative of highly stringent selection regimes (dNh/dSh ≈ 0.00),

moderate selection pressures (dNh/dSh ≈ 0.25), and more relaxed selection (dNh/dSh ≈
0.4). The position of the peaks differed only slightly depending on the protein-specific

simulation (figure 2.7, second row). Rate distributions estimated from S-SD were bimodal

with considerably fewer sites under highly stringent selection (dNh/dSh ≈ 0) compared

to the analogous S-SI protein-specific distribution (figure 2.7). Furthermore, more sites

were under weak selection pressures under S-SD compared to S-SI; the percentage of sites

with dNh/dSh > 0.5 under (S-SI, S-SD) were (8.5%, 17.2%), (2.9%, 4.2%) and (3.9%,

10.8%) for the 1qhw, 2ppn, and 1pek simulations respectively.
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Figure 2.7: M-series inference models capture the most common substitution rates across
sites. Histograms represent the distributions of expected site-specific substitution rates,
dNh/dSh, calculated from simulation models C-SI, S-SI, and S-SD (row) with protein-
specific parameters (column). The boxplots represent the distribution of maximum like-
lihood rate estimates, ω1 < ω2, under M3 (k = 2) for proteins 1qhw and 2ppn, and M3
(k = 3) for protein 1pek (ω1 < ω2 < ω3). Note the difference in x-axis range in the top
row (0.0 to 1.5) and the bottom rows (0.0 to 1.0).

An advantage of the S-SI and S-SD frameworks is that for each site evolving with

epistatic dependencies (under the temporally-dynamic S-SD), we are able to model an

analogous site evolving independently and under the same average stability restrictions

(under the time-homogenous S-SI). To assess the magnitude of the effect of epistasis

on evolutionary rates, I calculated the difference in substitution rates under epistasis (S-

SD) and site-independence (S-SI). Averaged over all sites in the alignment, the mean

differences in rates were 0.07, 0.08 and 0.11 for the 1qhw, 2ppn, and 1pek simulations

respectively, implying that across the whole protein epistasis had a modest effect on

substitution rates. However, site-wise analyses of rate differences revealed that epistasis

increased the expected substitution rate at 88.8%, 89.5%, and 84.3% of sites in the 1qhw,
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2ppn, and 1pek simulations. The largest differences in dNh/dSh rates were observed

at sites subject to stringent selection regimes under site-independence (dNh/dSh < 0.2,

figure 2.8). The less frequent and more minor reductions in rates due to epistasis occurred

at sites evolving close to neutrality with dNh/dSh ≈ 1 under site-independence.

Figure 2.8: Epistasis results in an increase in the expected substitution rate at a site,
dNh/dSh, compared to the expectation under site-independent evolution. Analysis was
completed for three protein structures: 1qhw, 2ppn, and 1pek (columns). Top panels
show the relationship between dNh/dSh under a stability-informed site-independent (S-
SI) model (rates calculated using equation (2.7)) and a stability-informed site-dependent
(S-SD) model (rates calculated using equation (2.8)). Epistasis increased substitution rates
at 88.8%, 89.5%, and 84.3% of sites in the 1qhw, 2ppn, and 1pek proteins. Bottom panels
show the difference in dNh/dSh under S-SD compared to the rate under S-SI. Positive
values indicate that rates are expected to be higher when epistatic interactions are included.
The mean differences in rates were 0.07, 0.08 and 0.11 for the 1qhw, 2ppn, and 1pek
simulations respectively.

2.3.2.2 Evaluating the relationship between epistatic sensitivity and structural fea-
tures

The previous result suggests that epistasis has a variable impact across sites. I was therefore

interested in assessing the properties which made a site more or less sensitive to epistasis.

To do this, I calculated a site’s “epistatic sensitivity” by measuring the variability in the

expected substitution rate given different background sequences. Since the vast majority

of randomly generated sequences have zero probability of folding correctly, I used the

sequences from the S-SD protein-specific alignments as the set of possible background

sequences. Therefore, the number of background sequences was 50×N , where N = {14,

14, 12} is the number of taxa for the 1qhw, 2ppn, and 1pek simulations respectively.
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If the substitution rate at a site was minimally influenced by the background sequence,

then I expect little variation in dNh/dSh values. Alternatively, if the rate at a site was

heavily influenced by the residues present at other positions, I expect higher variance in the

dNh/dSh values depending on the background protein sequence. I found that the degree of

epistatic sensitivity correlated significantly with structural properties, specifically relative

solvent accessibility (RSA) and weighted contact number (WCN ). The correlation

coefficient between RSA and epistatic sensitivity was 0.34, 0.39 , and 0.32 (all p-values <

0.001) for the 1qhw, 2ppn, and 1pek protein structures. Similarly, a significant correlation

was observed between WCN and epistatic sensitivity with a correlation coefficient of

-0.38, -0.42, and -0.22 for the 1qhw, 2ppn, and 1pek protein structures, respectively (all p-

values < 0.001). The relationship between epistatic sensitivity and the number of contacts

is shown in figure 2.9. Therefore, the results suggest that sites near the core of the protein

structure, with low solvent exposure (RSA) and high packing density (WCN ), were

more robust to changes in the background protein sequence compared to solvent-exposed

residues (high RSA and low WCN ).

Figure 2.9: Relationship between epistatic sensitivity and number of contacts. Epistasis
sensitivity is measured as the standard deviation in expected rates (dNh/dSh) across all
50×N background sequences, where N is the number of taxa = 14, 14, and 12 for the
1qhw, 2ppn, and 1pek proteins respectively. The lines represent a linear regression and the
shaded area the 95% confidence interval.

The observation that highly connected sites are less influenced by epistasis may

initially appear counterintuitive. However, consider a highly connected site at which

the fitness landscape needs to be compatible with the amino acid residues present at
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several interacting positions. A change at a few of the many neighboring amino acids has

negligible affect on a fitness landscape that is otherwise highly constrained by its many

contacts; hence there are minimal impacts on dNh/dSh values. I illustrate this using a

buried site and an exposed site in the 1qhw protein (figure 2.10A). For buried site 41 (RSA

= 0.01 and WCN = 1.27), the standard deviation in dNh/dSh was 0.04 across all 50× 14

background sequences. The fitness landscape at site 41 given four background sequences

with increasing divergence levels are plotted in figure 2.10B (top panels). Amino acid

isoleucine (I) was consistently the fittest at site 41, followed by amino acids valine (V)

and leucine (L) across the different background sequences. At equilibrium, the site will

primarily be occupied by the optimal amino acid (I) and most nonsynonymous mutations

will be deleterious resulting in a low dNh/dSh as expected given the correlations between

RSA (or WCN ) and dNh/dSh (figure 2.5). By contrast, consider a surface site which

tends to have fewer contacts. A substitution at one of the few interacting positions is

more likely to induce a larger shift in amino acid preferences and consequently alter the

expected substitution rate. This is illustrated in the bottom panels of figure 2.10B, which

show the fitness landscapes at surface site 73 of the 1qhw protein (RSA = 0.82, WCN =

0.79, standard deviation in dNh/dSh = 0.11).

Figure 2.10: Buried sites are more robust to changes in the background protein sequence
compared to exposed sites. (A) The structure of the 1qhw protein. Arrows indicate the
location of buried site 41 (RSA = 0.01 and WCN = 1.27) and exposed site 73 (RSA
= 0.82 and WCN = 0.79). (B) The fitness landscapes at buried site 41 (top panels) and
exposed site 73 (bottom panels) given different background sequences (columns). The
reported sequence identities are in reference to the background sequence used to determine
the landscapes in the left-most column.
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2.3.3 Traditional ω-based codon substitution models perform well de-
spite their site-independence assumption

2.3.3.1 Assessing the accuracy of substitution rate inference under M-series codon
models

I have thus far shown that epistasis impacts substitution rates; however, traditional codon

models used to infer selection pressures assume that sites evolve independently. Does

neglecting to account for epistasis bias inference from traditional ω-based models? Fur-

thermore, ω-based models assume that a small number of rate categories is sufficient to

account for the among-site rate heterogeneity. It is therefore important to compare errors

in estimation due to epistasis to the baseline estimation errors arising from unmodelled

variability in rates across sites. Comparing the inferred substitution rates (ω) from the S-SI

simulations to the theoretical rate expectations dNh/dSh, allows us to assess the inference

of rates in the presence of among-site rate heterogeneity but without temporal changes in

rate due to epistasis. The S-SD simulations allow us to assess the performance of ω-based

models in the presence of among-site rate heterogeneity and epistasis.

First, I used the M3(k) versus M3(k+1) likelihood ratio test to determine the number

of significant rate categories from each alignment (table 2.2). Three factors influence

the number of significant rate categories: simulation model, protein length, and tree

length. Within each protein-specific simulation, I found that the C-SI alignments had the

lowest number of significant tests for three rate categories compared to S-SI and S-SD

simulations. This is perhaps expected since the C-SI simulations had less heterogeneity in

rates across sites compared to the stability informed models. Each C-SI alignment had at

most 20 unique rate categories, whereas under S-SI and S-SD each site had a unique fitness

landscape(s) (see Methods section for details). Second, within each generating framework,

the 2ppn-specific simulations had the lowest number of significant results for three rate

categories. The 2ppn alignments were much smaller with only 107 codon sites compared

to the 1qhw (300 codon sites) and 1pek (279 codon sites) alignments. This suggests that

there is less power to detect additional rate components with fewer sites. Lastly, despite

similar numbers of codon sites, a larger number of the 1pek-specific simulations displayed

significant evidence for three rate categories compared to the 1qhw-specific simulations.

There are two potential reasons for this observation: (1) the number of rate categories is

influenced by the protein structure such that the 1pek contact map induces more variation

in rates across sites compared to the 1qhw structure; or (2) there is more power to identify
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rate heterogeneity with deeper trees (1pek tree length = 13.88, 1qhw tree length = 4.93).

To distinguish between these two possibilities, I conducted an additional experiment: I

generated 1qhw-specific alignments under the three generative frameworks (C-SI, S-SI,

and S-SD) along the 1qhw phylogeny with double the branch length (blx2, table 2.2)

and 1qhw-specific mutation parameters (table 2.1). From these additional simulations, I

found an increase in detection of three rate categories across all generative models. More

importantly, the number of significant tests for three rate categories were now comparable

to those from the 1pek-specific simulations (table 2.2). These results support the notion

that deeper trees provide more informative site patterns for the detection of among-site

rate heterogeneity.
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Table 2.2: Model contrasts for real and simulated alignments from three proteins (1qhw,
2ppn, and 1pek). The 1qhw blx2 results are from simulations on the 1qhw tree with
double the branch length. Reported are the number of alignments out of fifty for which the
specified likelihood ratio test was significant. Alignments were generated under simulation
models C-series site-independent (C-SI), stability site-independent (S-SI), and stability
site-dependent (S-SD). The mean total tree lengths from M3(k = 3) are also reported.

Model Contrast 1qhw 1qhw 2ppn 1pek
blx2

Real
M0 vs M3(k = 2) yes – yes yes
M3(k = 2) vs M3(k = 3) yes – no yes
M3(k = 3) vs M3(k = 4) no – no no
M3(k = 2) vs CLM3 yes – no yes
BUSTED(ω3 < 1) vs BUSTED no – no yes
Tree length 4.93 – 8.04 13.88
C-SI
M0 vs M3(k = 2) 50 50 50 50
M3(k = 2) vs M3(k = 3) 6 19 1 28
M3(k = 3) vs M3(k = 4) 0 0 0 3
M3(k = 2) vs CLM3 7 30 17 33
BUSTED(ω3 < 1) vs BUSTED 0 0 0 0
Mean tree length 5.27 10.48 7.55 13.32
S-SI
M0 vs M3(k = 2) 50 50 50 50
M3(k = 2) vs M3(k = 3) 21 42 7 39
M3(k = 3) vs M3(k = 4) 0 15 0 3
M3(k = 2) vs CLM3 10 23 14 22
BUSTED(ω3 < 1) vs BUSTED 0 0 0 0
Mean tree length 4.99 9.35 7.15 12.45
S-SD
M0 vs M3(k = 2) 50 50 50 50
M3(k = 2) vs M3(k = 3) 15 42 16 43
M3(k = 3) vs M3(k = 4) 2 0 0 4
M3(k = 2) vs CLM3 25 47 35 50
BUSTED(ω3 < 1) vs BUSTED 0 0 1 0
Mean tree length 5.04 9.65 7.57 14.18

Overall, I found that the number of rate categories inferred using the M3(k)–M3(k+1)

likelihood ratio test were consistent with the number of peaks observed in the correspond-

ing dNh/dSh distribution. I next asked whether the inferred substitution rates (ω) corre-

sponded to the expected rates (dNh/dSh). For the 1qhw and 2ppn specific simulation,

two rate categories were most commonly detected in the S-SI simulations. The first rate
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category was reflective of the sites subject to highly stringent selection regimes with low

substitution rates (ω1 ≈ 0). The second rate category often took on values representative

of the average of the tail of the dNh/dSh distribution (figure 2.7, second row). For the

S-SD simulations, the inferred ω values were consistent with the most common rates with

ω1 values comparable to the first peak in the dNh/dSh distribution and ω2 approximating

the second peak (figure 2.7, third row). More than half of the 1pek-simulated alignments

showed significant evidence for three rate categories; 28/50, 39/50, and 43/50 under C-SI,

S-SI and S-SD respectively (table 2.2). Consequently, for the 1pek simulations, I compared

the distributions of expected dNh/dSh rates to the ω1, ω2, and ω3 distributions estimated

under M3(k = 3), and found that the rates inferred using traditional codon models tended

to capture the most common rate categories (i.e., the distribution of ω values corresponded

to peaks in the dNh/dSh distributions, figure 2.7). Therefore, in the presence and absence

of epistasis, the ω estimates were consistent with the most common rate expectations.

The distributions of dNh/dSh under S-SD and S-SI are rich distributions showing

variation like that of a continuous distribution (figure 2.7). Due to computational limitations

(related to use of the pruning algorithm), ω-based models can only approximate these

distributions discretely. Some care is thus required in defining the target of ω-based model

estimation. I assessed the performance of ω-based models in two additional ways. First, I

looked at the correlations between expected site-specific rates (dNh/dSh) and the posterior

mean ωh inferred based on the best fitting M-series model. For rates calculated based on

the stability-informed models (S-SI and S-SD) the correlations were significant in all fifty

model- and protein-specific trials (table 2.3).

Table 2.3: Pearson correlations between expected site-specific substitution rates (dNh/dSh)
and inferred site-specific rates (posterior mean ωh). Reported are the number of simulated
alignments (50 total) for which the correlation was significant.

1qhw 2ppn 1pek
#sig mean r #sig mean r #sig mean r

C-SI 49 0.24 28 0.30 49 0.39
S-SI 50 0.68 50 0.75 50 0.79
S-SD 50 0.67 50 0.70 50 0.74

Second, under M3(k = 2), ωc is interpretable as the substitution rate averaged over
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time and across sites belonging to the rate class c = 1 or 2. Therefore, a potential way of

addressing the performance of M3(k = 2) is by resolving sites according to the posterior

probability of belonging to rate class (Pc) and calculating the average expected rate as

dNc/dSc = 1/n
∑
h

P h
c dN

h/dSh (2.1)

I compared the expected dNc/dSc to the inferred ωc values for respective rate class c;

the relative error in rate estimates are plotted in figure 2.11. As expected, the errors

were lowest for alignments generated under C-SI, since the generating model was the

most consistent with inference model assumptions (rates under C-SI are independent and

identically distributed). Nonetheless, the ω1 values were often underestimated. Based on

the results of Spielman and Wilke (2015), I suspect that the underestimation is due to the

asymmetry in the mutation models (μij 
= μji) present in all protein-specific simulations

(table 2.1). Importantly, and consistent with results from figure 2.7, the relative error in ω

estimates were comparable across S-SI and S-SD simulations. This supports the previous

conclusion that the performance of ω-based models is somewhat robust to epistatic effects.

Figure 2.11: The accuracy of rate estimation under M-series model is comparable
when alignments are generated with and without epistasis. Plotted is the relative error
( ωc

dNc/dSc
− 1) in rate estimation under M3 (k=2) for alignments generated under C-series

site-independent model (C-SI), stability-informed site-independent (S-SI), and stability-
informed site-dependent (S-SD) for each of the three proteins (1qhw, 2ppn, and 1pek). The
lighter points represent the relative error from each of the fifty model- and protein-specific
trials. The darker points are the average values across trials and the bars are the standard
deviation.
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2.3.3.2 Detecting temporal fluctuations in substitution rates and positive selection

By framing the S-SI and S-SD models within the MutSel framework, differences in

site-wise evolutionary dynamics between the site-independence assumption and epistatic

evolution become apparent. Under the traditional site-wise MutSel framework, the substi-

tution process is modelled independently at each position and hence the fitness effect of

a mutation is not influenced by the background protein sequence with fixed site-specific

fitness landscapes (figure 2.1B). Shifts in fitness landscapes (non-stationary dynamics)

are interpreted as evidence of adaptive events where external changes in environment or

gene function result in changes in the amino acid preferences at the site (dos Reis, 2015;

Jones et al., 2017). However, if a site is subject to epistatic interactions, the site-specific

fitness landscape, and hence the expected substitution rate at the site, are influenced by the

residues present at other positions. Epistasis, therefore, implies a nonstationary substitution

process over time such that the fitness landscape at a site constantly changes because of

substitutions at other positions (figure 2.1A), even when there are no adaptive events.

I was therefore interested in assessing whether traditional ω-based inference models

are able to detect temporal rate fluctuations due to epistasis. However, it is important to

note that using the MutSel framework, Jones et al. (2017) previously observed that site-

independent evolution can result in a detectable signal for temporal variation in substitution

rates (at evolutionary equilibrium) by a process reminiscent of Wright’s nonadaptive phase

of shifting. This occurs when a site accepts a mutation due to drift to a suboptimal amino

acid which is then followed by a transient period of higher rates of nonsynonymous

fixations as the site evolves towards the peak of the landscape. Additionally, they found

that these dynamics can result in site patterns consistent with positive selection when

tested using the BUSTED(ω3 < 1) versus BUSTED likelihood ratio test. It is therefore

important to compare the results due to epistasis to the baseline detection rates expected

due to nonadaptive shifting balance.

I used the M3(k = 2) versus CLM3 model comparison to test for temporal variations

in rates. M3(k = 2) serves as the null model whereas the covarion-like CLM3 accounts

for temporal switches between ω1 and ω2 by estimating a δ parameter interpretable as the

expected number of rate switches per substitution. I found that the number of significant

tests for temporal rate shifts was mainly influenced by two factors: the tree length and the

generative model. Consistent with the results reported in Jones et al. (2017), I found that

38



the number of trials for which CLM3 was the better fitting model increased with tree length

(table 2.2), this was true for all generative models and all protein-specific simulations. In

regard to the generative model, within each set of protein-specific simulations, the number

of trials with evidence for temporal switching was highest for the S-SD simulations

compared to alignments generated from the site-independent frameworks (C-SI and S-SI).

Furthermore, δ was estimated to be at least two times higher in the S-SD simulations

compared to the S-SI simulations (table 2.4). For the 1qhw, 2ppn, and 1pek simulated

alignments, δ was estimated to be (0.062, 0.148), (0.046, 0.182), and (0.031, 0.106) when

simulated under (S-SI, S-SD). These results suggest that temporal variations in rates due

to stability-induced epistasis produce a detectable signal in excess of the baseline signal

expected due to nonadaptive shifting balance on static fitness landscapes.

Table 2.4: Mean maximum likelihood estimate (MLE) under CLM3 from fifty simulated
alignments under models (C-SI, S-SI, or S-SD) with protein-specific parameters (1qhw,
2ppn, or 1pek)

Simulation model 1qhw 2ppn 1pek
Mean MLE Mean MLE Mean MLE

C-SI ω1 = 0.268, ω2 = 0.983 ω1 = 0.321, ω2 = 5.458 ω1 = 0.232, ω2 = 2.743
p1 = 0.440, δ = 0.385 p1 = 0.579, δ = 0.267 p1 = 0.449, δ = 0.159

S-SI ω1 = 0.028, ω2 = 0.449 ω1 = 0.006, ω2 = 0.290 ω1 = 0.004, ω2 = 0.181
p1 = 0.589, δ = 0.062 p1 = 0.649, δ = 0.046 p1 = 0.489, δ = 0.031

S-SD ω1 = 0.052, ω2 = 0.520 ω1 = 0.024, ω2 = 0.424 ω1 = 0.033, ω2 = 0.314
p1 = 0.635, δ = 0.148 p1 = 0.587, δ = 0.182 p1 = 0.363, δ = 0.106

Surprisingly, none of the simulated alignments showed significant evidence of positive

selection using the BUSTED(ω3 < 1)–BUSTED likelihood ratio test, with the exception

of only 1/50 S-SD generated alignments with 2ppn-specific parameters (table 2.2). This is

in contrast with previous results where nonadaptive shifting balance produced evidence of

positive selection in up to 40% of trials (Jones et al., 2017). This suggests that shifting

balance dynamics can be sufficiently different when fitness landscapes are informed by

stability constraints rather than being randomly drawn from a normal distribution.
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2.4 Discussion

I have examined the influence of stability-induced epistasis on expected and inferred

substitution rates, and assessed the accuracy of rate estimation from traditional ω-based

models. I found that epistasis resulted in minor elevations in substitution rates considering

sites across the whole protein. However, the impact of epistasis on site-specific dynamics

was prominent. A site evolving with epistatic effects on fitness had higher substitution

rates compared to an analogous site evolving independently and under the same average

stability constraints. Under site-independence, theory predicts that purifying selection

will maintain the site on or near the fitness optima of the fixed fitness landscape (i.e., the

site will predominantly be occupied by the optimal amino acid). Most nonsynonymous

mutations will be deleterious and are eliminated from the population resulting in low rates

of nonsynonymous substitutions relative to the rates of synonymous substitutions (low

dNh/dSh). In comparison, consider an epistatic site h and suppose that the site is occupied

by the fittest residue, a, given the current background sequence S. Following a substitution

at another position in the protein (so that the background sequence changes from S to

X), the fitness landscape at site h will change (figure 2.1B). If the change maintains a

as the fittest residue, then the substitution rate will remain low. On the other hand, if

the change in landscape renders amino acid a suboptimal, then over some period of time

the site will be occupied by a suboptimal amino acid. Therefore, the change in fitness

landscape induces a change in the amino acid equilibrium frequencies. Since the expected

substitution rate, dNh/dSh, is a function of the equilibrium frequencies (equation 2.7 and

2.8), and since epistatic sites are more likely to be occupied by suboptimal amino acid,

the expected substitution rate will consequently be higher compared to site-independence.

In other words, in the presence of epistasis, sites must constantly adapt to amino acid

replacements occurring at other positions in the protein which results in higher substitution

rates.

The observation that epistasis increased substitution rates contrasts with previous

results discussed in Rodrigue and Lartillot (2017), which found that epistasis most often

decreased substitution rates compared to site-independence. The discrepancy between

the results presented here and theirs is likely because of differences in the way epistatic

interactions are modelled and because of differences in expectations of what the rate

would have been under site-independent evolution. Rodrigue and Lartillot (2017) model
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epistasis as random deviations from multiplicative fitness, and consider the effect of

an epistatic landscape by comparison with a randomly assigned fixed fitness landscape.

Here, I implicitly model epistasis as a by-product of protein stability, and I compare the

rates from a model that accounts for protein stability but no epistasis (stability-informed

site-independent, S-SI) to a model that accounts for stability and includes temporal rate

fluctuations due epistasis (stability-informed site-dependent, S-SD). As such, both an

epistatic and an independently evolving stability-informed site are subject to the same

average stability-constraints, however, the epistatic site experiences fluctuating fitness

landscapes whereas the independent site is evolving on a fixed landscape (figure 2.1A &

B). This approach allows for a direct way of investigating the influence of epistasis on

protein evolution.

Since substitution rates are primarily determined from the fitness coefficients, I expect

that dynamic fitness landscapes due to epistasis will induce fluctuations in substitution

rates over time. The variation in rate may be transient, where preferences at the site shift

from some subset of amino acids to another; for example, polar residues might be preferred

in one background sequence whereas nonpolar residues might be preferred given another

sequence. For a short period of evolutionary time, the substitution rate will be transiently

high as the site adjusts to the new peak (dos Reis, 2015). Alternatively, a shift from a

more-uniform to a more-rugged landscape (or vice versa) would result in a sustained

difference in rate from high to low (or low to high). To test if such dynamics are detectable

using traditional ω-based inference models, I conducted the M3-CLM3 likelihood ratio test

on all simulated alignments. While there was evidence of temporal rate variations under

epistasis, it is important to note that Jones et al. (2017) showed that evolution on fixed

fitness landscapes can also result in detectable signal for temporal variations in rates. They

described a process reminiscent of the nonadaptive phase of Wright’s shifting balance

where a deleterious substitution due to drift moves a site away from its fitness peak and

is followed by a transient period of high rates of nonsynonymous substitutions as the

site evolves back to the fitness optima. In this way, epistasis and shifting balance result

in similar temporal rate dynamics; a site becomes occupied by a suboptimal amino acid

and subsequent nonsynonymous mutations are fixed in order to readjust to the fitness

peak. The difference, however, is that under site-independence the site is destabilized

due to a chance deleterious substitution at the site. In contrast, under epistasis, the site is
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destabilized because of a substitution at another position causing a shift in the underlying

fitness landscape. I found that the intensity of temporal rate switching was on average at

least two times higher because of epistasis compared to the switching rates due to shifting

balance. The higher switching rates is perhaps expected since shifting balance dynamics

are contingent on the rare fixation of deleterious mutations by drift, whereas epistasis

subjects sites to continuous changes in fitness landscapes.

Moreover, nonadaptive shifting balance dynamics were previously shown to elevate

ω rates to values greater than one (Jones et al., 2017), resulting in the canonical signal

for positive selection. Specifically, Jones et al. (2017) reported significant evidence

for positive selection at 10 − 40% of trials when branch lengths were sufficiently long

(total tree length was at least 7 substitutions per codon site). Here, two of the three

phylogenies used for simulations had a total tree length > 7 substitutions per codon site

(the 2ppn and 1pek phylogenies). However, I found no evidence for positive selection

when alignments were generated with stability-informed fitness landscapes (with and

without epistasis). Importantly, these results suggest that realistic fitness landscapes based

on stability constraints are not a source of conflation for the canonical signal for adaptive

evolution (ω > 1) when tested using traditional ω-based inference models.

Inference models operate on a set of assumptions that are certainly incorrect for

real protein evolution. Two of the most pervasive assumptions are that sites evolve

independently, and that the variability in rates among-site is accurately approximated

by a small number of rate categories. I find that, despite not accounting for epistasis,

ω-based inference models perform comparably well when alignments are generated with

and without epistatic interactions. A potential explanation for the comparability in model

performance is that the magnitude or frequency (or both) of changes in amino acid

preferences as a by-product of stability-induced epistasis are minor throughout evolutionary

history. This supports previous computational and experimental work showing that, with

respect to their impact on protein stability, amino acid fitness effects tend to remain

relatively well conserved over long evolutionary times (Risso et al., 2015; Ashenberg

et al., 2013). While accounting for epistasis is essential for understanding how proteins

evolve, the site-independence assumption does not appear to limit the utility or accuracy

of traditional inference models at identifying average selective pressures acting on natural

proteins.
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To address the concern that among-site rate variation might not be well-approximated

by a small number of rate categories, more sophisticated inference models based on

the MutSel framework were developed that permit a unique substitution process at each

alignment site (Tamuri et al., 2012, 2014; Rodrigue et al., 2010; Rodrigue and Lartillot,

2014). However, these frameworks are generally only applicable when large phylogenies

(> 100 taxa) are available in order to reliably estimate site-specific parameters (e.g., the

amino acid frequencies at each site, 19 parameters per site). Therefore, inference from

smaller datasets must rely on traditional ω-based inference models which group sites

into a small number of categories and estimate a much smaller number of parameters.

While I found that the full extent of site-wise rate heterogeneity was not detectable by

traditional models, the number of significant rate categories was consistent with the number

of peaks in the distributions of expected rates. This suggests that traditional inference

models are capable of detecting among-site heterogeneity when a sufficient number of sites

share similar rates. Additionally, and perhaps more importantly, the ω values estimated

were comparable to the theoretical rate expectations at the two or three clusters of sites.

Furthermore, I found that the posterior mean ωh calculated from simple M-series models

correlated significantly with the expected rates. Overall, the results from this chapter

suggest that ω-based models sufficiently describe average selective pressures.

The mutation-selection (MutSel) framework and biophysical models are a step to-

wards more mechanistically plausible generative frameworks. Nonetheless, our models are

limited by any underlying assumptions about the evolutionary process that are inconsis-

tent with real protein evolution. The population genetics theory underlying the MutSel

framework assumes mutations enter a population at an extremely low rate followed by

a near-instantaneous fixation or loss. As such, a system might not be well modeled by

MutSel when the dynamics of standing polymorphism can impact substitution rates (e.g.,

extended residence times for polymorphism, selective interference, stochastic tunneling

in large population), or the mutation rate is high (e.g. viral systems). As the goal was

to model an evolutionarily conserved property (stability constraints) for lineages having

low mutation rates and relatively small effective sizes, MutSel substitution dynamics are

expected to be appropriate.

The principles of thermodynamics underlying the biophysical model assume a sim-

ple two-state folding process where proteins are either correctly folded or are unfolded.
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Small monomeric proteins (< 100 amino acids) can fold in this way (Jackson, 1998);

however larger proteins require stable intermediate structures to fold properly. Of the

protein structures used here, and previously within this framework (Goldstein, 2011, 2013;

Pollock et al., 2012; Goldstein and Pollock, 2016, 2017), only the 2ppn protein has been

experimentally shown to fold following the two-state process (Jackson, 1998). In fact,

while it is the largest protein known to fold without the need of intermediate structures,

it is the smallest protein to ever be used within this thermodynamic framework. More

generally, the three structures used here differ in important ways (e.g. biological function,

protein length, packing density); nonetheless I observed similar consequences of epistasis

on substitution rates which suggests that the results may be generalized across stable,

globular proteins.

The current formulation of the biophysical model is limited to stable proteins with a

known three-dimensional structure and therefore does not characterise the evolutionary

dynamics of intrinsically disordered proteins or proteins with multiple conformations. The

three-dimensional structure is used to approximate the free energy of a sequence in a

given native state. Various methods have been developed to estimate stability values upon

mutations (e.g., FoldX (Guerois et al., 2002), Rosetta (Rohl et al., 2004)). In this study, I

used the Miyazawa-Jernigan contact potentials with the pairwise energy approximation

for its computational manageability and because even the most sophisticated models at

best only moderately predict mutational effects (Potapov et al., 2009). Furthermore, this

model was sufficient because I did not require exact amino acid sequences that can be

folded in the native structure; that is a demanding task even when more computationally

exhaustive methods are used. Instead, the objective was to simulate plausible evolutionary

dynamics, and I have shown that the modelling framework is sufficient for this purpose. In

addition, the models used here assume selection acting only on protein stability whereas

natural proteins are subject to additional functional and structural constraints. A recent

approach was presented by de la Paz et al. (2020) using multiple sequence alignments

of natural protein families (>1,000 sequences) to estimate global epistatic contributions.

The approach reproduces empirical and theoretical phenomena and is a promising tool for

improving our understanding of protein evolution.

To conclude, I have found that epistasis alters the dynamics of how proteins evolve. It

is therefore important to model epistatic interactions when the objective is to gain intuition
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and develop a deeper understanding of how protein sequences change over time. However,

with regards to inference of selective pressures, the data presented here suggests that

explicit modelling of epistasis might not be of paramount importance. Instead, accounting

for the phenomenological outcomes of epistasis, in allowing for more diversity in among-

site amino acid preferences (Rodrigue and Lartillot, 2017; Tamuri et al., 2014) and/or

accounting for temporal fluctuations in substitution rates (Jones et al., 2017; Murrell et al.,

2015), offer a promising avenue for the future development of inference models.

2.5 Methods

2.5.1 Natural protein alignments

Three globular, monomeric proteins were used throughout this study with PDB codes

1qhw, 1pek, and 2ppn. The 1qhw structure is from a purple acid phosphatase protein

extracted from rat bone and is likely involved in bone resorption (Lindqvist et al., 1999).

The 2ppn protein is a peptidyl-prolyl cis-trans isomerase extracted from human cells which

facilities the folding of other proteins (Szep et al., 2009). The 1pek protein is a proteinase

K used in protein digestion. The structure was extracted from Engypdontium album (Betzel

et al., 1993). The three protein structures differ in important ways. First, I included the

1qhw protein for consistency since it is the only protein to have previously been used

in this modelling framework. I included the 2ppn protein because of its smaller size (it

is approximately a third of the length of the other two proteins) and, more importantly,

because it has been shown to fold following the two-state folding (Jackson, 1998) and

therefore does not violate one of the core thermodynamic model assumption. Lastly, I

selected the 1pek protein because, while it is comparable in length to the 1qhw protein, it

is a more densely packed protein. The average number of contacts per site was 8.39 for the

1pek protein compared to 7.5 for the 1qhw protein (and 6.9 for the 2ppn structure).

For each of the three proteins I created a multiple sequence alignment of orthologous

gene sequences using MUSCLE (Sievers et al., 2011). Protein sequences were chosen if

there were no insertions or deletions since that will likely imply changes in the protein

structure which are not accounted for in the modeling framework. The accession numbers

for the gene sequences are reported in table 2.5. The 1qhw and 2ppn alignments included

gene sequences from fourteen taxa, whereas the 1pek alignment was made up of twelve

sequences. The length of the 1qhw, 2ppn, and 1pek alignments were 300, 107 and 279
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codon sites respectively.

Table 2.5: NCBI Accession numbers for sequences used to create the three natural protein
alignments (1qhw, 2ppn, 1pek).

1qhw 2ppn 1pek
NP 001075457.1 M80199.1 XM 003713956.1

ELK28734.1 U09386.1 XM 016786789.1
DAA35014.1 NM 204330.1 AM412313.1
ELR59971.1 NM 001252190.3 X14688.1

XP 020749961.1 AF483488.1 XM 018327475.1
DAA35015.1 BT021075.1 XM 006967830.1

NM 001256558.1 KY474593.1 EF362571.1
XP 021499432.1 KY474591.1 AF104385.1
XM 022526904.1 KY474590.1 AJ427459.1
XM 008048505.2 BC059689.1 HM635906.2

M76110.1 BT075719.1 XM 014693831.1
CR457078.1 NM 001139669.1 M73795.1

NM 001284443.1 NM 001103022.1
XP 005078573.1 BT082974.1

For each protein alignment I inferred a phylogenetic tree using IQ-TREE (Nguyen

et al., 2014) with ModelFinder (Kalyaanamoorthy et al., 2017) and ultrafast bootstrapping

(Minh et al., 2013). Maximum likelihood estimates yielded a wide range of tree lengths

(table 2.1) which allowed us to investigate how the relationship between model assumptions

and substitution rate was affected by tree length.

Following the protocol outlined in Sydykova et al. (2018). I calculate relative solvent

accessibility (RSA) and weighted contact number (WCN ) for all sites in each of the

protein structures. Relative solvent accessibility (RSA) was calculated as

RSA = ASA/maxASA (2.2)

where ASA is the accessible surface area calculated using DSSP (Kabsch and Sander,

1983), and maxASA is the maximum accessible surface area as measured by Tien et al.

(2013). WCN is calculated as
∑

j �=j 1/r
2
ij where rij is the distance between the geometric

centres of the side chains of residues occupying sites i and j.
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2.5.2 Mutation-Selection (MutSel)

The evolutionary process, for all the simulation models, was based on the mutation-

selection (MutSel) framework (Halpern and Bruno, 1998). This framework was introduced

in detail in section 1.3.1.

When generating protein-specific alignments, I used the nucleotide frequencies πj

and κ values estimated from the corresponding real alignment under inference model

M3(k = 3) (table 2.1). All models assume that selection acts on the final protein product.

The models therefore assign all synonymous codons the same fitness.

2.5.3 C-series site-independent model (C-SI)

Under C-SI, amino acid fitness values were approximated from the C-series empirical

frequency profiles (Quang et al., 2008), commonly used in phylogenetic inference. The C-

series model capture among site variation in amino acid preferences (and hence frequencies)

by assuming that a site belongs to one of twenty different frequency profiles. In the MutSel

framework, the frequency of amino acid a is related to its fitness fa by the following

relationship

πa ∝ π(0)
a exp(2Nefa) (2.3)

where π
(0)
a is the stationary frequency in the absence of selection pressure (dos Reis,

2015). I use this to convert each of the twenty C20 frequency profiles to twenty fitness

vectors. Note that the amino acid frequencies in the absence of selection pressures, π(0)
a ,

reflect underlying biases in the mutation process. The stationary frequency of a codon (or

nucleotide triple ijk) is proportional to πiπjπk. Then, π(0)
a is calculated as the sum of the

stationary frequencies of synonymous codons corresponding to amino acid a. Because the

three proteins studied here had different mutational parameters (table 2.1), the C20 profiles

translated to twenty protein-specific fitness landscapes. When generating alignments under

C-SI, each site was randomly assigned one of the twenty protein-specific fitness vectors.

As such, the C-SI model assumes that sites evolve independently and are identically

distributed.

2.5.4 Stability-informed models (S-SI and S-SD)

Alternatively, the stability-informed models (S-SI and S-SD) define fitness as the proportion

of correctly folded proteins at thermodynamic equilibrium, which is a nonlinear function

of the protein’s folding stability.
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Epistasis refers to the dependence of the fitness effect of a mutation on the background

genetic sequence. To account for epistasis within the MutSel framework, each site was

assigned a vector of amino acid fitness values F h(S) = 〈fh
1 (S), ..., f

h
20(S)〉 where fh

a (S)

is the fitness of the protein calculated as described in section 1.3.2, given amino acid a at

site h and background sequence S. Throughout the evolution of the protein, all site-specific

fitness vectors were recalculated following a nonsynonymous substitution somewhere in

the protein.

To assess if and how epistasis influences substitution rates, I developed an analo-

gous stability-informed site-independent model (S-SI) where epistatic effects on folding

stability were marginalized such that the fitness landscape at a site, F h, is independent

of the background sequence and is therefore constant across time. To allow for a direct

comparison between alignments generated with and without epistasis, I used the S-SD

simulations to estimate the independent fitness landscapes, F h (figure 2.2). In other words,

let {S1, ..., SN} be the extant sequences in an S-SD simulated alignment, where N is

the number of taxa. I calculated fh
a as the average fitness value for amino acid a over

sequences {S1, ..., SN}:

fh
a = (1/N)

N∑
t=1

fh
a (St) (2.4)

The average fitness values were used to specify the independent site-specific fitness vectors,

F h, under S-SI.

2.5.5 Scaling branch lengths

In order for branch lengths to have the desired interpretation as the mean number of single

nucleotide substitution per codon site, the substitution rates must be rescaled. For -SI

generated alignments, I rescaled the rate matrices in the conventional way by dividing all

site-specific rate matricies Qh by the mean expected rate of change:

(1/L)
L∑

h=1

61∑
x=1

−πxq
h
xx (2.5)

where L is the number of sites and qhxx = −∑
y �=x q

h
xy (Jones et al., 2017). Alternatively, to

obtain the appropriate scaling factor for the S-SD alignments, I ran the simulation for 1000

substitutions using the Gillespie algorithm (Gillespie, 1977). I recorded the overall time

T required for 1000 substitutions to occur by summing over the waiting times between
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substitutions,

T =
1000∑
t=0

L∑
h=1

τht (2.6)

where τh is the waiting time until the next substitution event at site h which is expo-

nentially distributed with mean 1/qhxx. Branch lengths, b, were then rescaled such that

b = n(T/1000). I validated the scaling methods by comparing the inferred branch lengths

from the simulated alignments to the true generating branch lengths (mean tree lengths

from each set of simulations are reported in table 2.2).

2.5.6 Sampling high fit sequences

To avoid nonequilibrium behavior, each of the protein-specific simulations were initiated

at amino acid sequences with fitness values > 0.99 given the respective protein structure.

However, sequence space is immense, and most sequences have a fitness of zero. I

developed and used the following algorithm to explore sequence space to find sequences

with high fitness:
Algorithm 1: Algorithm for exploring sequence space and finding sequence with

high fitness values

Start at randomly generated amino acid sequence S;

while fitness < 0.99 do

calculate the site-specific fitness landscape at all sites F 1(S), . . . , FL(S);

if a single step uphill move is possible then
randomly choose the next substitution from the set of single amino acid

changes that will increase fitness;

else
randomly choose 20 sites and substitute them to the fittest amino acid at

that site;

end

end

2.5.7 Expected substitution rate dN/dS calculations

The evolutionary rate at a site is commonly defined as the ratio of nonsynonymous to

synonymous substitutions rates (Nh/Sh) normalized by the ratio of nonsynonymous to

synonymous mutations rates (Nh
mut/S

h
mut). Assuming selection acting at the protein-

level such that synonymous codons have the same fitness value, the rate of fixation of a
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synonymous mutation will be equal to its underlying mutation rate, Sh = Sh
mut. Therefore,

the expected substitution ratio simplifies to dNh/dSh = Nh/Nh
mut. In the traditional

MutSel framework (i.e., assuming site-independence as done in simulation models C-SI

and S-SI), the evolutionary rate at a site, dNh/dSh, can be calculated directly from the

site-specific fitness coefficients and the protein-specific mutation rates.

dNh/dSh =
Nh

Nh
mut

=

∑
x

∑
y∈Nx

πh
xq

h
xy∑

x

∑
y∈Nx

πh
xμxy

(2.7)

where Nx is the set of codons that are nonsynonymous to codon x and differ by a

single nucleotide, qhxy is the substitution rate from codon x to codon y calculated using

equation (1.3), μxy is the mutation rate calculated under the HKY85 process (Hasegawa

et al., 1985), and πh
x is the stationary frequency for codon x at site h. I note that dos Reis

(2015) presented an alternative way of calculating dNh/dSh where the nonsynonymous

mutation rate, Nh
mut, was calculated in reference to the neutral stationary frequencies

π
(0)
x . While the interpretation of the dNh/dSh values differ (as discussed in Jones et al.

(2017)), I found that both formulations resulted in highly comparable rate values (Pearson

correlation coefficient = 0.99, p-value < 0.001; figure 2.12). The dNh/dSh rates reported

in the chapter were calculated using equation (2.7).
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Figure 2.12: Correlation between different ways of calculating site-specific substitution
rates, dNh/dSh. The dos Reis (2015) formulation measures the nonsynonymous mutation
rate in reference to the neutral stationary frequencies π(0)

x based on mutational biases only.
The Spielman and Wilke (2015) formulation measures the nonsynonymous mutation rate in
reference to the site-specific stationary frequencies πh

x in the presence of selection pressure
and mutational biases. See Jones et al. (2017) for further discussion on the interpretation
of both formulations. The Pearson correlation coefficient between both formulations was
0.99, p-value< 0.001.

When epistatic dependencies between sites are modelled within the MutSel frame-

work, the average substitution rate at a site can in principle be calculated as

dNh/dSh =

∑
S

Nh(S)∑
S

Nh
mut(S)

(2.8)

where the sum is over all possible background sequences S. However, the number of

possible sequences is very large, 20L where L is the length of the protein. While dNh/dSh

averaged over all 20L background sequences is the theoretical rate expectation, it is

impossible to calculate (because of the large number of sequences) and likely does not

reflect the rates for real proteins. Instead, for S-SD simulations, I define the evolutionary

rate at a site as the mean substitution rate observed throughout the evolution of a protein

over a defined length of time averaged over all generated alignments. Specifically, for

each S-SD alignment i (for i = 1, ..., 50) I approximate the rate at a site (dNh
i /dS

h
i ) by

summing over the extant sequences {S1, ..., SN}i.
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2.5.8 Assessing robustness to sample size

Given the enormity of sequence space, it is unclear that any sampling, no matter how

extensive, could characterize the entire fitness landscape. Since the evolution of natural

proteins billions of years ago, even natural proteins have not adequately sampled their

respective sequence space and are evolving on a small, localized portion of sequence space.

To understand how epistasis influences protein evolution concerning rates of substitution,

I consider comparisons between rate estimates from the S-SD and S-SI models in the

same local-neighbourhood of sequence space. This avoided the difficulty of comparing

behaviour in different regions of sequence space.

Specifically, to calculate the expected rate at a site, I approximate the rate as the

average over the extant sequences observed in each S-SD simulated alignment. The extant

sequences provide a sample of the local neighbourhood. To address the robustness of

the results to a more extensive sampling of sequences in the local space, I compared the

expected rate dNh
i /dS

h
i considering all extant sequences from each alignment i to the rate

dNh
ij/dS

h
ij calculated by leaving out the jth sequence. Then, I calculated the bias and

mean squared error (MSE) as:

biashi = 1/N
N∑
j=1

dNh
ij/dS

h
ij − dNh

i /dS
h
i (2.9)

MSEh
i = 1/N

N∑
j=1

[dNh
ij/dS

h
ij − dNh

i /dS
h
i ]

2 (2.10)

where N is the number of taxa per alignment. The distributions of the average bias and

average MSE, for all three proteins, suggest that calculating expected rates based on

the extant sequences does not systematically bias estimates, and has little impact on the

expected rate values (figure 2.13). However, note that the bias and MSE are slightly higher

for the 1pek simulations. This is likely due to two reasons: (1) the 1pek tree is deeper than

the 1qhw and 2ppn trees (tree length = 13.88, 4.93, 8.04 for 1pek, 1qhw, and 2ppn) which

means that the local neighbourhood is larger for the 1pek simulations, and (2) the number

of taxa in the 1pek alignment (N= 12) is smaller than the number of sequences in the

1qhw and 2ppn alignments (N = 14). The larger local neighbourhood in conjunction with

the smaller sampling likely lead to the increase in bias and MSE observed. Importantly,

however, the bias and MSE are nonetheless minor which suggests that calculating rates as
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the average over the extant sequences has minimal consequences on rate expectations.

Figure 2.13: Assessing the average bias and average mean squared error in expected
site-specific rates (dNh/dSh)

2.5.9 Thermodynamic model of protein folding

I used the stability-informed model described in section 1.3.2 to estimate fitness. The set

of alternative structures used to estimate the mean (Ē) and variance (ΔE2) of energies in

the unfolded states are listed in table 2.6.

Table 2.6: PDB codes for protein structures used to calculate average free energy, Ē, and
variance ΔE2, for a sequence in the unfolded configurations. Structures were taken from
(Goldstein and Pollock, 2017).

1cnz 1gyh 1jix 1m4l 1nsz 1pby 1t5j
1dmh 1hz4 1jj2 1mkf 1o4s 1pfk 1t5o
1e19 1i4w 1jkm 1moq 1o7j 1qo0 1to6
1ek6 1iom 1jl5 1mty 1o88 1qop 1uby
1esd 1ir6 1jub 1n00 1oc7 1rkd 1umd
1ga6 1jfb 1kwf 1nbf 1odm 1sbp 1v6s
1gwu 1jil 1l5o 1nd6 1ojj 1svm 1wch
1wer 1wkr 1woh 2bbv 2mas 3sil

2.5.10 Maximum likelihood inference of selection pressure
2.5.10.1 M-series models

The M-series models assumes a time-reversible, stationary, continuous-time Markov chain

where the instantaneous substitution rate matrix A defines the rate of substitution between

codon x and y as
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axy ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x and y differ by more than one nucleotide.

πj, if x and y differ by a synonymous transversion.

κπj, if x and y differ by a synonymous transition.

ωπj, if x and y differ by a nonsynonymous transversion.

ωκπj, if x and y differ by a nonsynonymous transition.

(2.11)

κ is the transition to transversion rate ratio, πj is the stationary frequency of the

target nucleotide j, and ω is the nonsynonymous to synonymous rate ratio. This describes

MG (Muse and Gaut, 1994) parameterization of M0, the simplest M-series model, with a

single rate parameter estimated for all sites in the alignment. To account for variation in

selection pressure across sites, M3(k) extends M0 by allowing for c discrete number of

rate categories, each with a rate parameter ωc and corresponding proportion of sites pc. M0

is analogous to M3(k = 1). The M3(k) versus M3(k + 1) likelihood ratio test was used to

determine the appropriate number of rate categories for each alignment.

2.5.10.2 CLM3

To test for variation in substitution rate across time, I used the covarion-like CLM3 as

implemented by Jones et al. (2017) which assumes that the substitution process switches

over time between one with an ω = ω1 and another with ω = ω2. The switching and

substitution processes can be modeled as a two-dimensional Markov chain (X,Y) where X

is the current codon and Y indicates the substitution process, 1 or 2. Ordering the possible

states as (1,1),(2,1),..., the rate matrix is

A =
1

r1

(
A1 0

0 A2

)
+

δ

r2

(
−p2I p2I

p1I −p1I

)
(2.12)

where A1 and A2 are the substitution rate matrices constructed using equation (2.11)

with ω1 and ω2 respectively; p1 and p2 are the expected proportion of time a site evolves

under the respective ω, I is the identity matrix, and δ denotes the rate of change between

selection regimes. r1 and r2 are scaling parameters such that time is measured as the

expected number of single nucleotide changes per codon site and δ is the expected number
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of switches per unit time. The model contrast M3(k = 2) versus CLM3 provides a

likelihood ratio test for evidence of switching between rate categories ω1 and ω2 across the

tree.

2.5.10.3 BUSTED

The branch-site unrestricted statistical test for episodic diversification, BUSTED (Murrell

et al., 2015), is based on the BS-REL framework (Kosakovsky Pond et al., 2011) allowing

for variations in rates across sites and branches. Specifically, BUSTED estimates three

rate categories (ω1 ≤ ω2 ≤ ω3) where at each branch in the tree, a site belongs to one of

the three ω categories. The model also estimates proportions p1 and p2 (p3 = 1–p1–p2)

shared across sites. If there is evidence for positive selection (ω3 > 1), then a likelihood

ratio test of BUSTED with ω3 constrained to be < 1 against an unconstrained BUSTED is

conducted.

2.6 Code and Data Availability

Real and simulated alignments, as well as the code used to generate, analyze, and plot have

been uploaded to GitHub (https://github.com/noory3/Consequences-of-stability-induced-

epistasis.)
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CHAPTER 3

TRAJECTORIES OF AMINO ACID
PROPENSITIES UNDER
STABILITY-MEDIATED EPISTASIS

This work was submitted to the journal Molecular Biology and Evolution, and was done in

collaboration with Edward Susko, Andrew Roger, and Joseph Bielawski.

3.1 Abstract

Epistasis between residues significantly impacts protein evolution. The propensity of

a resident amino acid can increase because of replacements at other sites—a nonadap-

tive phenomenon referred to as the evolutionary Stokes shift. Alternatively, decreases

in propensities have been interpreted as evidence of adaptations. I show that propen-

sities can decrease under nonadaptive stability-constrained evolution, a phenomenon I

call evolutionary anti-Stokes shifts. Using extensive simulations based on three natural

protein structures, I detect evolutionary Stokes shifts following approximately 50% of

substitutions, and anti-Stokes shifts in the remaining substitutions. Therefore, nonadap-

tive evolution can lead to positive and negative shifts in propensities, and hence their

detection is not conclusive evidence of adaptation. Nevertheless, two phenomena emerge

from nonadaptive evolution (1) the magnitudes and frequencies of Stokes and anti-Stokes

shifts tend to be balanced, and (2) epistasis leads to a significant negative autocorrelation

in propensity changes, thereby limiting the severity of evolutionary shifts. Analyses of

one-step propensity changes following the acceptance of stabilizing substitutions indicate
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that they increase mutational tolerance such that site-specific landscapes are more uni-

form, causing a decrease in resident amino acid propensities. In contrast, destabilizing

substitutions result in more rugged landscapes and tend to increase resident amino acid

propensities. In summary, the results from this chapter characterize propensity trajectories

under nonadaptive stability-constrained evolution, against which evidence of adaptations

should be calibrated.

3.2 Introduction

Amino acid interactions within a protein are a fundamental form of epistasis. Interactions

between sites occur because of functional, structural, or stability constraints (Ortlund et al.,

2007; Pollock et al., 2012; Gong et al., 2013). It has become evident that accounting

for epistasis between sites is critical for explaining various properties observed in natural

sequences (de la Paz et al., 2020; Goldstein and Pollock, 2017). Here, I focus on stability-

constraints by modelling protein evolution based on thermodynamic principles. This

modeling framework reproduces realistic evolutionary dynamics with regards to protein

stability values (Goldstein, 2011), evolutionary rates (Youssef et al., 2020), temporal and

spatial patterns of rate heterogeneity (Goldstein and Pollock, 2016), and convergence rates

(Goldstein et al., 2015). In this chapter, I explore long term shifts in amino acid preferences

due to nonadaptive stability-constraints.

Under nonadaptive evolution, a protein evolves on a fixed fitness landscape with no

changes in environment or function (Wright, 1932). Natural selection maintains the protein

near a peak on its landscape with equilibrium dynamics shaped by mutation, drift, and

selection. At equilibrium, most mutations are deleterious, while a small proportion is

beneficial. The higher fixation probability of the fewer but more advantageous mutations

is balanced by a lower fixation probability of the more frequent yet disadvantageous

mutations. As a result, the proportion of deleterious and beneficial substitutions (i.e., fixed

mutations) are equal (Goldstein, 2013; Cherry, 1998). This scenario contrasts with the

dynamics under adaptive evolution. Novel protein function or environment lead to shifts

in the fitness landscape, rendering the current state suboptimal. Subsequent fixations that

increase fitness transiently inflate substitution rates, a characteristic of adaptive episodes

(dos Reis, 2015; Jones et al., 2017).

Since its origin, the strictly neutral model of protein evolution is often treated as
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the null scenario that must be rejected prior to postulating adaptive evolution (Kimura,

1968, 1991; Duret, 2008). Equilibrium dynamics under stability-constrained models are

consistent with neutral theory (Goldstein, 2011). Using a stability-constrained model,

Goldstein (2011) showed that marginal protein stability emerges from the balance between

mutation, drift, and selection, challenging the notion that evolution actively selects for it

(DePristo et al., 2005). Nonadaptive epistatic models predict various characteristics in

natural proteins—such as marginal stability (Goldstein, 2011) and differences in mutational

tolerance across sites (Youssef et al., 2020)—highlighting that adaptive evolution need not

be invoked to explain their presence.

Using a nonadaptive stability-constrained model, Pollock et al. (2012) observed that

the preference for a newly substituted amino acid tends to increase over time due to substi-

tutions at other protein sites. They referred to this phenomenon as the ‘evolutionary Stokes

shift’. Shah et al. (2015) performed extensive in silico stability-constrained evolution and

observed that substitutions are often contingent on prior substitutions that increased their

probability of fixation and entrenched by subsequent replacements at other positions. In

contrast with these theoretical predictions, experimental results report that amino acid

preferences are often conserved over long evolutionary time scales (Starr et al., 2018; Risso

et al., 2015; Doud et al., 2015; Haddox et al., 2018; Ashenberg et al., 2013). Furthermore,

evidence of decreases in propensities is emerging (Popova et al., 2019; Stolyarova et al.,

2020). Decreases in preferences have been interpreted as evidence of adaptive evolution to

a changing environment. Specifically, Popova et al. (2019) state that epistatic constraints

“cannot lead to a systematic reduction in fitness of the incumbent alleles”, naming this

phenomena senescence.

Faced with seemingly conflicting observations, it is unclear if there are general pat-

terns in how amino acid propensities shift during evolution. Do resident amino acid

preferences increase, decrease, or remain conserved? And to what extent are these dy-

namics shaped by nonadaptive processes? Using extensive simulations under a stability-

constrained model, I apply two quantitative metrics to evaluate long term propensity shifts.

I observe that all three trajectories emerge from nonadaptive dynamics at mutation-drift-

selection equilibrium. Importantly, resident amino acid preferences can decrease merely

due to epistatic constraints. Building on previous work (Pollock et al., 2012), I refer to this

as the evolutionary anti-Stokes shift. I also observe a significant negative autocorrelation in
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propensity changes in the stability simulations, suggesting that epistasis tends to conserve

amino acid preferences rather than alter them.

Lastly, I characterize the underlying mechanisms that cause propensities to fluctuate.

Following a stabilizing substitution, most site-specific landscapes become more uniform

and hence more mutationaly tolerant. This leads to decreases in the propensities of the

resident amino acids, since other residues may occupy each site with little or no detriment

to fitness. In contrast, destabilizing substitutions tend to induce more restrictive site-

specific landscapes, limiting potential substitutions and increasing the propensity for the

resident amino acid. Importantly, these phenomena emerge from a nonadaptive model of

sequence evolution with constraints on protein stability.

3.3 Results

I use a thermodynamic model of protein evolution and equate fitness to the probability

of correct folding, a function of protein stability (ΔG). I assume no changes in struc-

ture or function so that the global fitness landscape (the mapping between sequence and

fitness) remains constant. Nonetheless, this modelling framework accounts for epista-

sis by assigning site-specific fitness landscapes dependent on the background sequence

(fh(S) = {fh
1 (S), ..., f

h
20(S)} for a given site h and background sequence S). Amino

acids that confer higher fitness values (improve stability) will more frequently occupy

the site and have higher expected frequencies (i.e. propensities). In this way, the fre-

quency of an amino acid is related to its fitness—the formal relationship is provided

by equation (3.1). Frequency landscapes are also site-specific and context-dependent

(πh(S) = {πh
1 (S), ..., π

h
20(S)}). Note, that the fittest amino acid may not have the highest

frequency. This occurs when a suboptimal amino acid has many codon aliases. The high

number of synonymous codons and/or mutational bias can increase the residue’s frequency

despite its lower fitness.

An evolutionary Stokes shift is a phenomenon whereby the propensity (πh
a ) for a

resident amino acid increases due to substitutions at other positions (Pollock et al., 2012).

Here, I define propensity as the equilibrium frequency given a fixed background sequence,

πh
a(S) = π(0)

a e2Nefh
a (S)/

∑
x

π(0)
x e2Nefh

x (S) (3.1)
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where Ne is the effective population size and π
(0)
a are the neutral stationary frequencies

(dos Reis, 2015). In previous work (Pollock et al., 2012; Goldstein and Pollock, 2017),

propensities represented thermodynamic preferences and effectively assumed no mutational

biases. This can be accommodated in this formulation by assuming no mutational biases

such that π(0)
a is uniform (π(0)

a = 1/20). However, the simulations presented here are based

on three proteins with unequal nucleotide frequencies and transition/transversion rate

biases. I account for these by estimating protein-specific π
(0)
a (see Methods section for

details; figure 3.1). Nevertheless, the results remained consistent under both definitions of

propensity. Unless otherwise stated, I use equilibrium frequencies to measure amino acid

propensities.

Figure 3.1: The expected amino acid frequencies in the absence of selection but accounting
for underlying mutational biases. The dotted line represents the expected frequency values
in the absence of mutational biases and assuming all amino acids have the same number of
codon aliases (=1/20).

Results are based on 500 protein-specific simulations for three proteins. The pro-

teins differ in structure (PDB codes 1qhw, 2ppn, and 1pek), function (a phosphatase, an

isomerase, and a proteinase), and length (300, 107, and 279 amino acids; see Methods

for more detail). I ran each simulation for 500 substitutions with Ne = 100. On average,

sequences diverged at 43% of sites within a simulation. Increasing the number of sub-

stitutions or the effective population size did not alter the results. See section 3.5.3 for a

discussion assessing the robustness of the results from this chapter to different simulation

settings.

3.3.1 Increases, decreases, and conservation of preferences under non-
adaptive evolution

Throughout the simulations, and in natural protein evolution (Risso et al., 2015; Gong

et al., 2013; Ashenberg et al., 2013), the preference for an amino acid changes over time.
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In natural proteins, these variations can occur because of adaptive or nonadaptive processes.

By contrast, variations in sites’ fitness and propensity landscapes in the simulations are due

to stability-induced epistasis and are not adaptive. Examples of these propensity dynamics

are shown in figure 3.2. The propensity for aspartic acid (D), the resident amino acid at site

232, changes as substitutions occur at other protein sites (figure 3.2A). The site experiences

an evolutionary Stokes shift where its propensity increases over time. Alternatively, at site

72, the propensity for the resident amino acid proline (P) decreases (figure 3.2B), while the

propensity for glutamine (Q), at site 88, was conserved (figure 3.2C). All three trajectories

emerged at mutation-drift-selection equilibrium and in the absence of adaptive changes.

Shifts in amino acid propensities are not directly observable in natural proteins.

However, Popova et al. (2019) suggested that shifted propensities alter replacement rates,

producing a detectable signal in protein alignments. An amino acid’s replacement rate is

inversely related to its propensity: if the propensity for the resident amino acid is high,

then its replacement rate will be low, and vice versa. Therefore, in addition to the amino

acid propensities, I calculated the expected replacement rate as the sum of transition rates

to neighbouring sequences that differ from the current sequence at the site of interest.

Figure 3.2D and 3.2E confirm the predicted effect on replacement rates. At site 232,

the increase in propensity (i.e., evolutionary Stokes shift) is accompanied by a decrease

in the replacement rate (figure 3.2A&D). Similarly, the decrease in resident amino acid

propensity at site 72 (i.e., evolutionary anti-Stokes shift), is accompanied by an increase in

replacement rate (figure 3.2B&E). Therefore, both increases and decreases in replacement

rates can occur because of nonadaptive evolutionary Stokes and anti-Stokes shifts.
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Figure 3.2: Trajectories of amino acid preferences under nonadaptive evolution. (A,D) site
232 undergoes an evolutionary Stokes shift where the propensity for the resident amino
acid, aspartic acid (one letter code D), increases over time. (B,E) site 72 undergoes an
anti-Stokes shift where the propensity for the resident amino acid, proline (one letter code
P), decreases over time. (C,F) The propensity for the resident amino acid glutamine (one
letter code Q) at site 88 remains conserved. (A,B,C) plot the propensity of the resident
amino acids as substitutions occur at other positions in the protein. (D, E, F) show the
expected replacement rates. Results are from a simulation of the 1pek protein.

3.3.2 A balance in the occurrence of evolutionary Stokes and anti-
Stokes shifts

The previous results demonstrate that propensity shifts can occur under nonadaptive

evolution. However, it remains unclear whether shifts are widespread or rare. To address

this, I developed two metrics to quantify trends in propensities. The metrics are described

in detail in the Methods section and illustrated in figure 3.3A. Briefly, metric MSLR is the

Slope of the Linear Regression where the covariate x is time (measured in substitutions)

and the response y is the propensity of the resident amino acid. In defining the evolutionary

Stokes shift, Pollock et al. (2012) state that “the inherent propensity for [an] amino acid

at that position will be, on average, higher than it was when the substitution occurred”.

I, therefore, defined the metric MAMI , consistent with this definition, calculated as the

Average propensity of an amino acid while it is resident Minus its Initial propensity.

Values of MSLR and MAMI > 0 indicate an evolutionary Stokes shift, while values < 0

suggest an evolutionary anti-Stokes shift.
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Figure 3.3: Description and analysis of metrics used to estimate propensity shifts. (A)
Plotted is an example trajectory observed at site 82 of the 1pek protein. The site accepts two
substitutions (vertical dotted lines) and the resident amino acid changes from D→E→D.
Consider the dynamics following the acceptance of amino acid E. The first metric (MSLR)
is the Slope of the Linear Regression where x is the number of substitutions and y is
the propensity of the resident amino acid a at site h (πh

a ) calculated over i ≤ x ≤ j; i is
the substitution where amino acid a first occupies the site and j is the last substitution.
The second metric MAMI is the Average propensity of an amino acid while it is resident
(avg[πh

a|res]) Minus its Initial propensity (πh
a|new). Metrics values > 0 indicate evolutionary

Stokes shifts and values < 0 indicate evolutionary anti-Stokes shifts. (B) Hexbin plot
showing the relationship between MSLR and MAMI . The shade of each hexbin represents
the number of points per hexbin. Reported are the relative percentage of points within each
quadrant across all simulations. (C, D) The distribution of MSLR and MAMI respectively
estimated from 500 simulations for each of three proteins (1qhw, 2ppn, and 1pek), and the
distributions based on a null model where propensities changed randomly over time.

Estimates from MSLR suggest that both Stokes and anti-Stokes shifts occurred with

similar frequencies (figure 3.3C, table 3.1). Alternatively, estimates from MAMI suggest

an excess of Stokes compared to anti-Stokes shifts (figure 3.3D, table 3.1). Why do

percentages differ under MSLR and MAMI? To investigate this, I developed a null model

by randomly sampling propensities from the empirical distribution of resident amino acid

propensities observed throughout the simulations. In these null model simulations, MSLR

estimated equal percentages for both evolutionary shifts (table 3.1). However, MAMI esti-

mated a higher percentage of Stokes shifts (65.4%) compared to anti-Stokes shifts (34.6%),

with an excess of Stokes shifts that is greater than in the stability simulations. The higher
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occurrence of Stokes shifts is, therefore, unlikely to be a consequence of stability-mediated

epistasis. Rather, it possibly reflects a statistical artifact associated with MAMI .

Table 3.1: Percentage of Stokes and anti-Stokes shifts from the stability simulations are
consistent with random fluctuations in propensities. Results are based on 500 protein-
specific simulations (1qhw, 2ppn, and 1pek), and a null model where propensities changed
randomly over time.

% anti-Stokes % Stokes
MSLR MAMI MSLR MAMI

1qhw 51.8 42.4 48.2 57.6
2ppn 51.0 41.0 49.0 59.0
1pek 50.9 40.8 49.1 59.2

Null model 49.0 34.6 51.0 65.4

We can understand the cause of this kind of artifact by evaluating the distribution

of amino acid propensities. Propensities are often less than 0.5 when an amino acid is

first substituted, and in most cases, they remain low (figure 3.4A). The distribution of

an average of sampled propensities from such a distribution will not be the same as the

distribution of a single propensity (figure 3.4A compared to 3.4B). I, therefore, hypothesize

that the asymmetry in the propensity distribution is leading to higher estimates of Stokes

shifts under MAMI . To test this hypothesis, I developed two additional null models. The

first null model samples propensities from the normal distribution N(0,0.1). The second

model samples from the uniform distribution U(0,1). When the propensity distribution

was symmetric, both metrics estimated equal proportions of Stokes and anti-Stokes shifts.

This demonstrates that MAMI is sensitive to the shape of the propensity distribution and

will estimate an excess of Stokes shift if the distribution is asymmetric.

An important question remains: Why are propensities so often less than 0.5 in the

stability simulation? Substitutions tend to occur within a “neutral zone” where the original

and newly substituted amino acids have similar fitness contributions, and therefore similar

propensity values (Goldstein and Pollock, 2017). This is evident from the higher correlation

between propensities of the original and newly substituted amino acids than the correlation

between the original amino acid and other residues (figure 3.4C). Since all 20 amino acid

propensities must sum to one, and the propensities for the original and newly substituted
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amino acids must be similar, they are likely to be ≤ 0.5.

Figure 3.4: Stability-mediated epistasis conserves amino acid preferences. (A) Empirical
distribution of initial (πh

a|new) and resident (πh
a|res) amino acid propensities observed during

simulations of the 1qhw protein. Dotted line represents the median πh
a|new value. (B)

Distribution of the average propensity of an amino acid while it is resident in the stability
simulation (blue distribution) and the null model where propensities varied randomly
over time (yellow distribution). Lines represent the median value from the respective
distribution. (C) Pearson correlation between propensities of previously resident amino
acids (πh

old) and newly accepted residues (πh
new) observed in the simulations (blue line)

compared to a null distribution (grey distribution). The null distribution was obtained by
estimating the correlation between the propensity of the previous amino acid (πh

old) and the
propensity of a randomly sampled residue given the same site and background sequence.
This was repeated 10,000 times. (D) Violin plots showing the distributions of πh

a|res (dark
blue) given that πh

a|new (light blue) was within a specific range. (E) The mean and standard
deviation for MAMI estimates within each πh

a|new range.

3.3.3 Stability-mediated epistasis conserves, rather than alters, amino
acid propensities

The percentages of Stokes and anti-Stokes shifts from the random null model were similar

to those from the stability simulations under MSLR (Table 3.1). However, estimates under
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MAMI differed and the distributions of values were markedly different (figure 3.3D). The

median MAMI was an order of magnitude higher in the random model (5e-2) compared to

the stability simulation (7e-3). In the null model, average propensities were often higher

than initial propensities, whereas average and initial values were approximately equal in

the stability simulations (compare median lines in figure 3.4A & 3.4B). Furthermore, the

distribution of resident amino acid propensities in the stability model tended to closely

match the distribution of initial propensities (figure 3.4D). Taken together, these results

suggest that propensities were more conserved in the stability simulations compared to the

null expectations.

Indeed, in the stability simulations, an amino acid having a high initial propensity

is likely to continue enjoying high propensity throughout its residency, and low initial

propensities often remain low (figure 3.4D). When initial propensities were between 0.0

and 0.2, there were fewer instances of Stokes shift in the stability simulation (65%) than

the null model (98%), leading to a lower average MAMI value (figure 3.4E). In contrast,

when initial propensities were high, between 0.8 and 1.0, there were fewer instances of

anti-Stokes shifts in the stability simulation (75%) than the null model (100%), leading

to a higher average MAMI value (figure 3.4E). Across all initial propensity ranges, fewer

instances of either Stokes or anti-Stokes shifts occur under stability-constrained evolution,

as compared to the unconstrained null. This further supports that propensities are more

conserved in the stability simulations.

Stability-mediated epistasis conserves propensities through a significant negative first-

order autocorrelation in propensity changes (autocorrelation averaged across sites were

between -0.22, -0.24, and -0.21 for the 1qhw, 1pek, and 2ppn proteins). In other words,

increases in propensity tend to be followed by decreases (and vice versa) leading to lower

variability in propensities in the stability model compared to the null expectation. While

these results suggest that stability-mediated epistasis frequently conserves amino acid

propensities, there will be instances where propensities shift considerably over time at some

sites. Importantly, however, nonadaptive dynamics will be balanced in the frequencies and

magnitudes of Stokes and anti-Stokes shifts.
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3.3.4 The dynamics of evolutionary Stokes and anti-Stokes shifts are
comparable under nonadaptive evolution

The current metrics cannot distinguish between different underlying propensity dynam-

ics. For example, the metrics estimate similar values for the following scenarios: (1) a

rapid increase (or decrease) in amino acid propensity followed by a longer period where

the propensity remains high (or low), and (2) a more gradual increase (or decrease) in

propensity over time. It may be the case that evolutionary Stokes shifts occur soon after a

substitution, while evolutionary anti-Stokes shifts are more gradual. To quantify whether

propensity changes accelerated or decelerated, I compared the absolute value of each

metric calculated over the first half of the amino acid residency (M1X) and the estimate

over the second half (M2X), where X is either SLR or AMI . Specifically, I calculated

(|M2X | - |M1X |) / Tres where Tres is the amino acid residency time (measured in number

of substitutions). I found no significant differences in the average rates of change between

Stokes and anti-Stokes shifts (Welch’s t-test, P-values > 0.05, table 3.2).

Table 3.2: Differences in average rate of change between substitutions experiencing
evolutionary Stokes and anti-Stokes shifts. The rate of change is calulated as |M2X |
- |M1X |) / Tres. Reported are the p-values based on Welch’s t-test. Substitutions are
classified as undergoing an evolutionary Stokes (or anti-Stokes shift) if the corresponding
metric value was greater than (or less than) zero.

1qhw 1pek 2ppn
Difference
in means P-value

Difference
in means P-value

Difference
in means P-Value

X = SLR -1.7e-6 0.55 1.3e-6 0.58 -1.8e-6 0.59
X = AMI -1.3e-6 0.62 2.3e-6 0.31 -2.2e-6 0.41

Another dynamic might be missed with the current metrics: do physicochemically

similar amino acids experience similar shifts in propensities? Goldstein and Pollock

(2017) observed that when a site experiences an evolutionary Stokes shift, not only

does the propensity for the resident amino acid increase but so does the propensity for

physicochemically similar residues. For example, if V becomes newly resident at a site,

then the propensity for it and similar amino acids (e.g. L) will increase. Is the same

behaviour expected for anti-Stokes shifts? To address this, I grouped amino acids that

tend to interchange rapidly and that have similar chemical properties: [AST], [C], [DE],

[FY], [GN], [HQ], [IV], [KR], [LM], [P], [W] (Susko and Roger, 2007). Rather than
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evaluating the propensity dynamics for an individual amino acid, I tracked the dynamics

of amino acid groups and applied the metrics to the summed group propensities. If

evolutionary anti-Stokes shifts only affect individual amino acids, I expect %anti-Stokes in

the binned analysis to be less than the %anti-Stokes for individual amino acids. However,

the estimated percentage from the binned and individual amino acid analyses were similar

(figure 3.5). Overall, these results suggest that both evolutionary shifts tend to induce

comparable dynamics for similar amino acids.

Figure 3.5: Percentages of Stokes and anti-Stokes shifts based on binned analyses. Amino
acids were grouped as: AST, C, DE, FY, GN, HQ, IV, KR, LM, P, W (Susko and Roger,
2007). Bins represent amino acids which tend to interchange rapidly and have similar
chemical properties. Evolutionary shifts were calculated based on the sum of propensities
for all amino acids in a specific bin. (A) Approximately half of substitutions are followed
by evolutionary anti-Stokes shifts based on metrics MSLR and MAMI . (B) Evolutionary
Stokes and anti-Stokes shifts occur at similar frequencies (%anti-Stokes / %Stokes ≈ 1)

3.3.5 Evolutionary Stokes and anti-Stokes shifts both occur at ex-
posed and buried sites

A site’s location in a protein influences its evolutionary dynamics. For globular proteins,

surface residues are usually involved with protein function (e.g., binding affinity, enzymatic

activity) with a preference for hydrophilic residues, while buried sites prefer hydrophobic
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residues and evolve slower (Yeh et al., 2014; Shahmoradi et al., 2014; Marcos and Echave,

2015; Echave et al., 2015). Two measures of a site’s location in the protein are relative

solvent accessibility (RSA) and weighted contact number (WCN ). Both RSA and WCN

correlate significantly with substitution rates in natural (Yeh et al., 2014; Shahmoradi et al.,

2014; Marcos and Echave, 2015) and simulated proteins (Youssef et al., 2020). Exposed

sites have higher substitution rates, higher RSA, and lower WCN than buried sites. In

line with these observations, I found a negative correlation between average residency time

and RSA and a positive correlation with WCN (figure 3.6).

Figure 3.6: Relationship between average amino acid residency time and location in the
protein. Plotted are the correlations with relative solvent accessibility (RSA, top row), and
weighted contact number (WCN , bottom row) for three proteins (1qhw, 2ppn, 1pek).

Popova et al. (2019) recently suggested that buried sites are more likely to undergo

evolutionary Stokes shifts, while exposed sites are more prone to decreases in propensities.

I assessed sites’ susceptibility to evolutionary Stokes and anti-Stokes shifts by examining

the relationship between the metrics and location in the protein (figure 3.7). The average

values of MSLR at exposed and buried sites were not significantly different (Welch’s

t-test, P-values > 0.05 for all proteins; table 3.3). While the average MAMI values were

significantly higher at buried compared to exposed sites (Welch’s t-test, P-values < 0.001

for all proteins; table 3.3), the effect sizes were minor (6e-3, 1e-2, 8e-3 for the 1qhw, 1pek,

and 2ppn proteins respectively). Therefore, evolutionary Stokes and anti-Stokes shifts

are not associated with the locations of sites in a protein. This conclusion is consistent

with experimental results in the HIV envelope protein where sites with shifted propensities

were observed across the protein (Haddox et al., 2018).
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Figure 3.7: Evolutionary shifts in propensities occur with similar frequency and magnitude
at exposed and buried sites. Sites are considered exposed if their relative solvent accessi-
bility (RSA) is > 0.05, and are considered buried if RSA ≤ 0.05. The columns report the
results from simulations of the 1qhw, 2ppn, and 1pek proteins, respectively.

Table 3.3: Differences in the average metric value based on position in the protein (exposed
versus buried sites). Reported P-values are based on Welch’s t-test. Null hypothesis is that
both exposed and buried sites have identical mean values. A site is considered buried if its
relative solvent accessibility (RSA) ≤ 0.05, and is exposed if RSA > 0.05.

1qhw 1pek 2ppn
Difference
in means P-value

Difference
in means P-value

Difference
in means P-Value

MSLR -4.2e-5 0.16 -7.5e-5 0.005 7.5e-5 0.063
MAMI -0.006 <0.001 -0.010 <0.001 -0.008 <0.001

While the previous result suggests that all sites are equally susceptible to undergoing

evolutionary Stokes or anti-Stokes shifts, it remains unclear if the entailed dynamics are

comparable. I was interested in assessing whether location in the protein might influence

the rate of propensity changes. For example, a deleterious substitution at a surface site

might be compensated for by adjustments at a small number of interacting sites, leading to
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a rapid evolutionary shift. Alternatively, a deleterious substitution at a highly connected

site might require more adjustments at other positions, and, therefore, the propensity shift

may be gradual. However, I found that the average rates of change were not significantly

different at buried and exposed sites (all p-values were > 0.17, Welch’s t-test; table 3.4).

Table 3.4: Differences in average rate of change between substitutions based on position in
the protein (exposed versus buried sites). The rate of change is calulated as |M2X | - |M1X |)
/ Tres. Reported are the p-values based on Welch’s t-test. Substitutions. Null hypothesis is
that both exposed and buried sites have identical mean values. A site is considered buried
if its relative solvent accessibility (RSA) ≤ 0.05, and is exposed if RSA > 0.05.

1qhw 1pek 2ppn
Difference
in means P-value

Difference
in means P-value

Difference
in means P-Value

X = SLR 3.1e-6 0.39 1.0e-6 0.72 -4.9e-6 0.35
X = AMI -1.2e-7 0.97 3.8e-6 0.17 -2.3e-7 0.58

3.3.6 Stabilizing substitutions increase resident amino acid propensi-
ties while destabilizing substitutions decrease them

I have shown that long term shifts in amino acid preferences can occur because of non-

adaptive stability-mediated epistasis. Next, I turn to the underlying mechanisms that cause

changes in propensities after a single substitution. Following a substitution, the fitness

and propensity landscapes at most sites in the protein will change because of epistasis.

Important questions about how substitutions alter propensities remain unanswered: Do

substitutions tend to favourably impact some sites (by increasing their resident amino

acid propensities) while simultaneously disadvantaging other sites (by decreasing their

resident amino acid propensities)? Or does a substitution impact propensities similarly

across sites? I found that the effect of substitution on resident amino acid propensities

is unbalanced. Substitutions either favourably (or disfavorably) impact most sites by

increasing (or decreasing) their resident amino acid propensity (figure 3.8A). Stabilizing

substitutions (ΔΔG < 0) were associated with decreases in propensities of resident amino

acids at most sites while destabilizing substitutions (ΔΔG > 0) caused propensities to

increase (figure 3.8B).
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Figure 3.8: Stabilizing substitutions reduce resident amino acid propensities while destabi-
lizing substitutions often increase propensities. (A) Stability-mediated epistasis between
sites results in changes in resident amino acid propensities as substitutions accrue. Fol-
lowing an amino acid replacement at one position in the protein, so that the sequence
changes from Sx → Sx+1, the propensity of the resident amino acids at all sites will
change. The grey dots are the changes in the propensities of the resident amino acids
at each site following a substitution, Δπh

a = πh
a(Sx+1) − πh

a(Sx). The red dots are the
change in the propensity of the resident amino acid at the substitution site, and therefore
a change in the amino acid from a → b (Δπh

a→b = πh
b (Sx+1)− πh

a(Sx)). (B) Stabilizing
substitutions (ΔΔG < 0) decrease resident amino acid propensities at most sites. In
contrast, destabilizing substitutions (ΔΔG > 0) result in a lower percentage of sites where
Δπh

a < 0.

To illustrate the effect, consider the dynamics following a stabilizing substitution from

S1 → S2 (figure 3.9). I focus on site 145 as an example of the site-specific dynamics. The

uphill move from S1 to S2 flattened the fitness landscape at site 145. Given that sequence

S2 has greater stability, a destabilizing mutation has a smaller fitness effect relative to the

same mutation in the less stable S1 sequence. How does the change in the fitness landscape

relate to variations in propensities? Since a higher number of amino acids can now occupy

the site with little or no detriment to protein fitness, the propensity landscape will similarly

become more uniform (figure 3.9C). Amino acids like R, N, and P that had low propensity

in the context of sequence S1, are more likely given the “stability-buffered” sequence S2

(figure 3.9C). Since propensities must sum to one, the increase in the propensity of some

amino acids (e.g., R, N, and P) will cause a decrease in the propensity of the resident

72



amino acid (K in this example; figure 3.9). The opposite trends are evident following the

fixation of a destabilizing mutation (figure 3.9D). The fitness (figure 3.9E) and propensity

(figure 3.9F) landscapes became less uniform, with fewer amino acids having non-zero

propensities, and an increase in resident amino acid propensities.

Figure 3.9: Epistatic dynamics following the fixations of stabilizing (A,B,C) and desta-
bilizing (D,E,F) substitutions. (A) Let S1 be the initial protein sequence, and S2 be the
sequence following the acceptance of a stabilizing substitution (blue dot). Given the
stability-buffered sequence S2, deleterious mutations which would not have been fixed in
S1 are now more likely to be fixed (e.g. R, N,P). The fitness landscape (B) and propensity
(C) landscapes at a non-substituted site 145 becomes more uniform. The fitness and
propensity of the resident amino acid is shown in dark green. (D, E, F) are the respec-
tive plots following the fixation of a destabilizing substitution (red dot). The fitness and
propensity landscapes at the non-substituted site become less uniform. These landscapes
were observed in simulations of the 1pek protein.

To quantify the effect across all sites, I measured landscape uniformity using Shannon

entropy Hh(S) (see Methods section for detail). Entropy is highest when the landscape is

uniform (i.e., all amino acids have equal frequencies) and is at a minimum (= 0) when only

one amino acid has a non-zero propensity. Note that the uniformity of fitness and propensity

landscapes are highly correlated (figure 3.10). The fitness landscape describes the fitness of

nearby sequences, while propensity landscapes consider how frequently nearby sequences
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are explored. I, therefore, report the entropy of the propensity landscapes, although I expect

similar results based on fitness landscapes. As expected, at higher stability values (lower

ΔG), the landscapes were more uniform compared to at lower stability values (figure

3.11A, Spearman correlation coefficients < −0.98 for all proteins, P-values < 0.001).

Figure 3.10: Relationship between the Shannon entropy of a propensity landscape com-
pared with the entropy of the fitness landscape. Reported are the average entropy values
over all sites given a particular background sequence from a single simulation trial for
each of three protein structures (1qhw, 2ppn, and 1pek).

Next, I assessed how substitutions alter landscape uniformity. A change from a

uniform to a rugged landscape (with a small number of amino acids having non-zero

propensities), will result in a negative ΔHh. In contrast, a positive ΔHh indicates an

increase in landscape uniformity. I considered a substitution as permissive if, on average,

it increased landscape uniformity across sites (i.e., a positive average ΔH). A restrictive

substitution is one where following its acceptance, the landscapes at most sites permit

fewer amino acids (i.e., a negative average ΔH). The stability effect of a substitution

(ΔΔG) is strongly correlated with its influence on landscape uniformity (figure 3.11B,

Spearman correlation coefficient −0.99, P-value < 0.001). Consistent with the results in

figure 3.9, stabilizing substitutions provide a stability-buffered background so that slightly

destabilizing mutations are more likely to be fixed, expanding the space of potential

evolutionary paths (figure 3.11C). In contrast, destabilizing substitutions were restrictive,

limiting potential evolutionary trajectories (figure 3.11C).

These results are consistent with evolutionary dynamics on saturating fitness functions

(Cherry, 1998; Goldstein, 2013). On a saturating fitness curve, mutational effects decrease
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with increasing fitness. At a higher point on the fitness curve, site-specific fitness landscapes

will be more uniform. Since more amino acids may be tolerated at the site, the propensity

for the resident amino acid will decrease. Therefore, stabilizing substitutions entail

decreases in the propensities of resident amino acids due to the general flattening of the

site-specific fitness landscapes. Alternatively, destabilizing substitutions tend to increase

resident amino acid propensities because some mutations become selectively inviable and

have low fixation probabilities.

Figure 3.11: Stabilizing substitutions are permissive and destabilizing substitutions are
restrictive. (A) The relationship between protein stability (ΔG) and landscape uniformity,
measured as the entropy of the propensity landscape averaged over all sites in the protein
(avg H). (B) The relationship between the stability effect of a substitutions (ΔΔG) and
the resulting average change in landscape uniformity (avg ΔH). Color bar represents
the percentage of sites for which the propensity for the resident amino acid decreased
(Δπh

a < 0). Positive avg ΔH values imply that, on average, the landscapes became more
uniform. Therefore, the substitution is deemed permissive. Negative avg ΔH are indicative
of restrictive substitutions. Plotted results are based on a single simulation of the 1pek
protein. (C) The percentages of different types of substitutions for each of three proteins
(1qhw, 2ppn, and 1pek). Percentages are calculated from 500 protein-specific simulations
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3.4 Discussion

In this chapter, I have examined the evolutionary dynamics of proteins under nonadaptive

stability-constraints. I found that as proteins become more stable adverse fitness effects of

mutations diminish, thereby expanding the space of potential evolutionary trajectories. It

has been suggested that highly stable proteins may be more adaptable to new functions

since they are more likely, than less stable proteins, to accept destabilizing yet functionally

beneficial mutations (Schreiber et al., 1994; Nagatani et al., 2007; Wang et al., 2002;

DePristo et al., 2005). I suggest that highly stable proteins, all other things being equal,

may also be more adaptable because they are more apt to explore neighbouring regions of

sequence space. Nevertheless, it is important to note that selection on other properties of

proteins, such as their expression level and the cost of translation error (Drummond et al.,

2005), can also influence their evolution. Therefore, the relationship between evolvability

and stability of proteins is likely to reflect the complex interplay of multiple factors.

As more (or fewer) mutations become accessible, the propensity for the resident amino

acid at a site will change. Stabilizing substitutions expand evolutionary paths and, in doing

so, decrease resident amino acid propensities (figure 3.8 & 3.11). By contrast, destabilizing

substitutions limit accessible trajectories and increase resident amino acid propensities.

At mutation-selection-drift equilibrium, the proportion of stabilizing and destabilizing

substitutions should be equal (Cherry, 1998; Goldstein, 2011). As such, a balance is

expected in the proportion of increases and decreases in propensities. This balance may

arise if (1) for any given site the number of propensity increases is the same as the number

of decreases; (2) some sites undergo systematic increases in propensities, an evolutionary

Stokes shift, while others undergo systematic decreases in propensities, an anti-Stokes

shift; or (3) some combination of these two phenomena. The results presented here favour

the latter scenario since there is no tendency for sites to experience Stokes versus anti-

Stokes shifts and fluctuations in propensities are negatively autocorrelated. While, in

some instances, the propensity at a site may drift upwards with time, the dynamics at

equilibrium are such that there will be an approximately equal number of sites experiencing

the opposite trend.

Propensity shifts cannot be directly observed in natural proteins. Instead variation

in replacement rates over time may be inferred as a proxy: increases in resident amino

acid propensity lead to decreases in replacement rates, and decreases in propensity lead to
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higher replacement rates (Popova et al., 2019; Stolyarova et al., 2020; Gelbart and Stern,

2020). Analysis of natural protein alignments often reveal a balance in the number of rate

accelerating and decelerating sites. For example, across five mitochondrial genes 21/28

sites showed evidence of replacement rate decreases/increases (Stolyarova et al., 2020),

and 137/134 sites across nine proteins in HIV and SIV (Gelbart and Stern, 2020). Popova

et al. (2019) analysed four influenza A protein alignments and found that the ratios of

replacement rate decreases/increases were 2/0, 0/0, 4/12, and 5/8 for the H1, N2, H3, and

N2 proteins, respectively. The balance in rate increases and decreases in these datasets

is suggestive of nonadaptive processes. Nonetheless, the excess of rate increases in the

H3 protein could be evidence of adaptive herd immunity (Popova et al., 2019). Since

nonadaptive processes can shift propensities, it is important to calibrate our evidence of

adaptations with nonadaptive signals. Future work assessing the dynamics of propensity

shifts under adaptive evolution is warranted.

I defined an evolutionary Stokes shift as an increase in the propensity of a resident

amino acid at a site (Pollock et al., 2012). This can be thought of as a ‘site-level’ evo-

lutionary Stokes shift. Goldstein and Pollock (2017) later described a ‘sequence-level’

Stokes shift where they break down the stability of the sequence into two components: the

pairwise energetic contribution from all interactions with a resident amino acid at a focal

site, and the contribution from all other interactions in the sequence. The sequence-level

Stokes shift is then described in terms of a pull towards regions in sequence space where

the energetic contribution of a resident amino acid is high. The prediction is: if the resident

amino acid at a focal site is highly stabilizing, then the stability contribution from the

background sequence will be low. Since a higher number of background sequences will

satisfy lower stability contributions, the evolutionary process will remain in such regions

of sequence space for more extended periods. Note, however, that the choice of focal

site is arbitrary. Therefore, as the stabilizing contributions of the resident amino acid at a

particular site increases, it alleviates the need for the resident amino acid at another site

to be high. As such, the sequence-level Stokes shift hints at the existence of a site-level

anti-Stokes shift, since the lower stability contributions from the background sequence

imply that some non-focal sites may be free to have lower stability contributions (and thus

lower propensities). Here, I make explicit that such decreases in preference do occur.

Evolutionary Stokes and anti-Stokes shifts relate to changes in the propensities of
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resident amino acids due to nonadaptive stability-mediated epistatic effects. Alternatively,

contingency and entrenchment are phenomena describing changes in the relative fixation

probabilities of substitutions (Shah et al., 2015) which can arise by adaptive or nonadaptive

means. While these phenomena (entrenchment ≈ evolutionary Stokes shift, and contin-

gency ≈ evolutionary anti-Stokes shift) have been used interchangeably (de la Paz et al.,

2020), they are related yet distinct. It is evident that a site-level evolutionary Stokes shift

may lead to the entrenchment of a resident amino acid at a site making it less likely to

revert over time. I suggest that a site-level anti-Stokes shift could similarly contribute

to the phenomenon of contingency. A particular evolutionary history that decreases the

propensity of the resident amino acid concurrently entails increases in propensities of

non-resident amino acids, thereby increasing their probabilities of fixation. This includes

cases where the resident and a non-resident amino acid enter the nearly neutral zone,

and the increased probability of their substitution at such times is consistent with the

concept of contingency in Shah et al. (2015). As such, substitutions may be contingent on

other changes occuring in the protein. However, the original conception of contingency

was related to external chance events (Gould, 1991). Therefore, evolutionary Stokes and

anti-Stokes shifts may produce signals consistent with entrenchment and contingency.

Nevertheless, contingency and entrenchment may arise by other means and are not limited

to variations in propensities due to stability constraints.

An advantage of thermodynamic stability models is that they provide plausible

nonadaptive null models for protein evolution (Goldstein, 2011; Pollock et al., 2012;

Goldstein and Pollock, 2017). They have been used to critically assess adaptationist

claims about the trade-offs between protein function and stability (Taverna and Goldstein,

2002; Goldstein, 2011), and protein function and foldability (Govindarajan and Goldstein,

1996). “Despite the seduction of adaptive rationalizations”, to quote one of the original

authors of this model, “neutral evolutionary dynamics remains the null model that must

first be rejected” (Goldstein, 2011). The demonstration that amino acid propensities may

decrease over time in the absence of external environmental changes does not preclude

that environmental shifts could render resident amino acids less favourable. Rather the

results presented here demonstrate that decreases in propensities are expected to occur in

the absence of external changes, and therefore that their mere occurrence should not, on

their own, be taken as conclusive evidence of adaptations.
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3.5 Methods

3.5.1 Descriptions of natural proteins

I simulated the evolution of three proteins with PDB codes 1qhw, 2ppn, and 1pek. The

proteins differ in structure, function, length, and contact density. The 1qhw protein is

a phosphatase, the 1pek protein is a proteinase, and the 2ppn protein is an isomerase.

The 1qhw protein has 300 amino acids, 1pek is made of 297 amino acids, and the 2ppn

protein comprises 107 residues. The 1pek protein was the most densely packed with an

average number of contacts per site of 8.4 compared to 7.5 for the 1qhw protein and 6.9

for the 2ppn protein. During the simulations, I used the nucleotide frequencies (πn) and

transition/transversion rate (κ) parameters estimated from multiple sequence alignments

for the corresponding protein used in Youssef et al. (2020) (Chapter 1 in this thesis). The

mutation parameters (κ, πA, πC , πG, πT ) were set equal to (4.37, 0.21, 0.32, 0.28, 0.20) for

the 1qhw protein; (0.90, 0.19, 0.35, 0.56, 0.21) for the 1pek protein; and (2.50, 0.27, 0.24,

0.29, 0.19) for the 2ppn protein.

3.5.2 Evolutionary model

For simulations I used the MutSel model (section 1.3.1) with fitness values estimated from

the stability-infromed framework (section 1.3.2). Sequence space is vast and randomly

sampling sequences rarely produces viable proteins. Starting the simulation in such dire

conditions leads to evolution randomly drifting between low fit sequences. Therefore,

I used the algorithm outlined in section 2.5.6 to obtain protein sequences with fitness

values ≥ 0.99 given the corresponding protein structure. Then, I evolved the equilibrated

sequence for 500 substitutions while keeping track of the site-specific fitness landscapes at

all sites. The reported results are based on the post-equilibration phase. I generated 500

protein-specific replicates for each protein. Unless otherwise stated, I assumed Ne = 100.

3.5.3 Assessing robustness of results to simulation settings

In order to assess the robustness of the results to different simulation settings, I conducted

additional simulations using the 1qhw protein. The additional simulations included: (1)

allowing for a longer equilibration phase; (2) increasing the number of substitutions per

simulation; (3) increasing the effective population size; (4) increasing both the effective

population size and the lenght of the simulation; and (5) looking at changes in propensities
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as defined in Pollock et al. (2012). In all the additional experiments, the percentage of

Stokes and anti-Stokes shifts were consistent with the results reported above (table 3.5).

Table 3.5: Assessing robustness of results to simulation settings. Reported are the per-
centage of substitutions where the metric (MSLR or MAMI) values was negative. P-values
as based on the Binomial test where the null hypothesis assumes an equal percentage of
positive and negative values. Results based on simulations of the 1qhw protein.

Simulation
Number
of trials

Number
of windows

%MSLR

<0 P-value
% MAMI

<0 P-value

Ne = 1e2 500 36,934 51.8 <0.001 42.4 <0.001
Ne = 1e6 50 3,659 50.0 1.0 40.8 <0.001
Thermodynamic
propensity 500 36,934 51.2 <0.001 42.2 <0.001

Longer
equilibration phase 50 4,268 49.3 0.40 39.6 <0.001

# subs = 5000 50 88,229 51.1 <0.001 34.3 <0.001
Ne = 1e6 and
# subs = 5000 50 85,643 51.2 <0.001 34.8 <0.001

For all results described in this chapter, I only considered the dynamics when a residue

was accepted and subsequently replaced within the time-frame of the simulation, and where

the amino acid was resident for at least ten substitutions. However, I repeated the analyses

with the inclusion of partial windows (where for example an amino acid is accepted during

the simulation but the simulation ends prior to its replacement) which revealed similar

results with respect to the proportion of evolutionary Stokes and anti-Stokes shifts.

3.5.4 Amino acid propensities

Suppose that for a simulation trial we observe S1 → S2 → ... → S500 where the Sx’s

are the codon sequences realized during the simulations, and Sx and Sx+1 differ by

a single nucleotide substitution (synonymous or nonsynonymous). Given a sequence

S = [c1, . . . , cL], I can calculate the fitness of amino acid a at site h holding the rest of

the sequence constant, fh
a (S) = f(c1, . . . , ch−1, ch(a), ch+1, . . . , cL) where c(a) is a codon

encoding amino acid a. The fitness landscape is then fh(S) = {fh
1 (S), . . . , f

h
20(S)}. I use

the fitness values to calculate the amino acid stationary frequencies using (3.1). I calculate

π
(0)
a as the sum over the neutral stationary frequencies for synonymous codons for each

amino acid. The neutral frequency for a codon made up of nucleotide triplet ijk will be
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proportional to πiπjπk. For the mutation-selection model, the stationary frequency of a

sequence S having codons c1, . . . cL is proportional to

∏
h

π
(0)

ch
exp[f(S)]. (3.2)

It follows that the (marginal) probability of amino acid a at site h is given by (3.1).

3.5.5 Description of metrics used to quantify evolutionary Stokes and
anti-Stokes shifts

I defined two metrics to quantify shifts in propensities. First, let the residence time of an

amino acid (Tres) be the time period between i and j, where i is the substitution when

amino acid a first occupies the site and j is the last substitution. The first metric is the

Slope of the Linear Regression over Tres where the covariate x is time (measured in

substitutions) and the response y is the propensity of the resident amino acid a at site h

(πh
a ). I refer to this metric as MSLR. The second metric MAMI is the difference in the

Average propensity of an amino acid while it is resident (avg[πh
a|res]) Minus its Initial

propensity (πh
a|new). Metrics values greater than 0 are suggestive of an evolutionary Stokes

shift and values less than 0 are indicative of evolutionary anti-Stokes shifts. Figure 3.3

provides a visual representation of the metrics.

3.5.6 Quantifying the uniformity of a landscape

I used the Shannon entropy of a propensity landscape as a measure of its uniformity. I

calculate entropy as

Hh(S) = −
∑
a

πh
a(S) ln π

h
a(S) (3.3)

where πh
a(S) is the propensity of amino acid a at site h given background sequence S.

The entropy is maximized when all amino acids are equally likely, and is minimized (= 0)

when only a single amino acid is observed. To determine how the landscapes change in

response to changes in the background protein sequence, I compared the entropy before

and after the substitution

ΔHh = Hh(Sx+1)− Hh(Sx) (3.4)

I classified a substitution as permissive if the average ΔH across all sites was positive, and

restrictive if the average ΔH was negative.
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3.5.7 The rate of amino acid replacement

I calculated the rate of leaving the resident amino acid at a site h as the sum of the transition

rates over all sequences that differ from the current sequence by a single nucleotide and

have a different amino acid at site h.

3.5.8 Null model

I developed a null model in order to examine the dynamics of propensity shifts in the

absence of the temporal effects of epistasis. I sampled 10,000 window sizes (i.e., residency

times) from the empirical distribution observed in the stability simulations. For each

window, I randomly sampled propensity values from the empirical propensity distribution

plotted in figure 3.4A. Then I estimated MSLR and MAMI for each window. The distribu-

tions of MSLR and MAMI are plotted in figure 3.3C and D, and the estimated percentages

of Stokes and anti-Stokes based on each measure are reported in table 3.1.

3.5.9 Code availability

All code used to simulate, analyze, and plot data has been uploaded and is freely available

from https://github.com/noory3/antiStokes shifts.
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CHAPTER 4

SHIFTS IN AMINO ACID PREFERENCES
AS PROTEINS EVOLVE: A SYNTHESIS
OF EXPERIMENTAL AND
THEORETICAL WORK

This work was submitted to the journal Protein Science, and was done in collaboration

with Edward Susko, Andrew Roger, and Joseph Bielawski.

4.1 Abstract

Amino acid preferences vary across sites and time. While variation across sites is widely

accepted, the extent and frequency of temporal shifts are contended. Our understanding of

the underlying drivers changing amino acid preferences is incomplete: To what extent are

temporal shifts driven by adaptive versus nonadaptive evolutionary processes? I review

phenomena that cause preferences to vary (e.g., evolutionary Stokes shift, contingency,

entrenchment) and clarify how these phenomena differ. Then, to determine the extent and

prevalence of shifted preferences, I review experimental and theoretical studies. Analyses

of natural sequence alignments often detect decreases in homoplasy (convergence and

reversions) rates, and variation in replacement rates with time. Such signals are consistent

with temporally changing preferences. For example, as proteins diverge their set of pre-

ferred amino acids will likely differ, leading to lower homoplasy rates. While approaches

inferring shifts in preferences from patterns in natural alignments are valuable, they are
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indirect since multiple mechanisms (adaptive and nonadaptive) could have led to the ob-

served signal. Alternatively, site-directed mutagenesis experiments allow for a more direct

assessment of shifted preferences. They corroborate evidence from multiple sequence

alignments, revealing that the preference for an amino acid at a site varies depending on the

background sequence. However, shifts in preferences are usually minor in magnitude and

sites with significantly shifted preferences are low in frequency. Nevertheless, the small

yet consistent perturbations in preferences as proteins evolve could jeopardize the accuracy

of inference procedures, which assume constant preferences. I conclude by discussing

if and how such shifts in preferences influence widely used time-homogenous inference

procedures and potential ways to mitigate their effects.

4.2 Introduction

Protein evolution is complex, leaving confounding signals in natural sequences. An

evolutionary biologist interested in understanding the evolutionary history of a population,

species, or protein must investigate these patterns and decipher their likely causes: Is the

observed signal evidence of adaptive evolution, or could it have arisen by nonadaptive

processes? To address these questions, we must first have a rigorous understanding of the

patterns emerging under the interplay of random genetic drift and selective pressure to

maintain protein function, but in the absence of adaptive processes. To this end, I review

nonadaptive evolutionary phenomena and their identifiable footprint in natural sequences.

The space of possible protein sequences is vast. For an average-sized protein of

length 300, the number of possible sequences (20300) exceeds the number of atoms in

the observable universe (1082). This combinatorial explosion prohibits our ability to fully

characterize the sequence-to-sequence (S2S) fitness landscape on which a protein evolves.

A more tractable approach is to define the fitness landscape at an individual site in the

protein. The site-specific fitness landscape is fully defined by a vector of 20 describing

the fitness of the mutant protein created by placing each amino acid at the site given

a particular background sequence S, where fh(S) = {fh
1 (S), . . . , f

h
20(S)} defines the

fitness landscape at a site h (Bazykin, 2015). From fitness landscapes, we can estimate

site-specific propensity landscapes. Propensity can be defined as the expected frequency

with which an amino acid occurs at a site (e.g., Chapter 3), or the fraction of sequences at

thermodynamic equilibrium carrying that particular mutation (Pollock et al., 2012). The
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propensity for an amino acid is related to its fitness by

πh
a(S) = π(0)

a e2Nefh
a (S)/

∑
x

π(0)
x e2Nefh

x (S) (4.1)

where Ne is the effective population size and π
(0)
a is the expected frequency of amino acid

a in the absence of selection (dos Reis, 2015). In this review, I use the more general term

site-specific preference landscape to describe the relative preferences for amino acids,

estimated from any of the above definitions. Preference landscapes are often normalized

so that the sum of all amino acid preferences is equal to one and are usually represented

using a heatmap (Bazykin, 2015), a sequence-logo plot (Bloom, 2015), or a barplot (Jones

et al., 2017) (figure 4.1).

Proteins evolve with various biophysical and evolutionary constraints on their struc-

tures and functions. Such selective constraints manifest as differences in preference

landscapes among sites and across time. Spatial, or among-site, variability has been exten-

sively studied revealing commonly observed patterns (Echave et al., 2016). Buried sites

often prefer hydrophobic residues, while surface sites have a higher affinity for hydrophilic

amino acids. In addition, preference landscapes at surface sites are usually more uniform,

with many residues having similar preferences, than at buried sites, where only a small

number of amino acids have high preferences (Youssef et al., 2020). Failing to account

for such spatial variability can jeopardize the accuracy of inference procedures. As a

result, various inference methodologies accommodate differences in frequency profiles

across sites (e.g., Wang et al. (2008)). Temporal, or across-time, variability in preference

landscapes is comparatively less understood. This has lead to the interpretation of temporal

rate shifts as evidence of adaptive evolution (Yang and Nielsen, 2002; Zhang et al., 2005);

however, the role of nonadaptive processes, such as epistatic interactions between sites, in

changing preferences and rates is gaining appreciation (Pollock et al., 2012; Goldstein and

Pollock, 2017; Shah et al., 2015).

I begin by reviewing various nonadaptive phenomena that give rise to temporal shifts

in preferences. Then, I discuss evidence for shifted preferences gleaned through analyses

of natural sequence alignments. The observed levels of convergence rates, reversion rates,

and replacement rates are broadly consistent with nonadaptive evolution. However, this

evidence is inferential and indirect—other mechanisms which we may not yet appreciate
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may be the ultimate causes of such signals. To more directly quantify the magnitude

and prevalence of shifted landscapes, I discuss results from site-directed mutagenesis

experiments. The conclusion from these datasets is that amino acid preferences shift over

time. However, nonadaptive shifts are usually minor in magnitude and low in frequency.

Nevertheless, such minor yet consistent perturbation in preference landscapes lead to

variations in rates across time. I end by discussing the consequence these shifts might have

on widely-used inference procedures and potential ways to mitigate their effects.

A R N D C Q EG H I L K M F P S T W Y V 

Figure 4.1: Different representations of site-specific preferences. In the heatmap repre-
sentation darker shades imply higher preference. In the barplot, bar height represents the
preference for the respective amino acid. In the sequence-logo (seq-logo) representation,
the size of the letter represents its preference relative to other amino acids.

4.3 Causes of nonadaptive shifts in preferences

Protein evolution is commonly viewed as a walk in sequence space directed by natural

selection, drift, and mutations. This was intuitively summarized by John Maynard Smith,

where he used a word game as an analogy of protein evolution (Maynard Smith, 1970).

Starting with a meaningful word, the objective is to, at each turn, change one letter to yield

a different meaningful word. His example trajectory was WORD → WORE → GORE →
GONE → GENE. Meaning, in this case, is defined as any English word and is therefore

binary (a word is either meaningful or not). Despite its simplicity, Maynard Smith’s word

game analogy illuminates various salient evolutionary dynamics (figure 4.2). Relevant to

this review, I will use it to illustrate how adaptive and nonadaptive processes can lead to

similar dynamics for site-specific landscapes.

Analogous to a site-specific landscape, let us define a position-specific landscape

as a 26-element vector for each letter in the English alphabet. Each letter is assigned a

value of zero if it does not produce a meaningful word in the context of the characters

present at the other positions and is assigned a value of one otherwise. A change in the
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background sequence from -ORE to -ONE will cause a shift in the first-position fitness

landscape. Letters (such as W) that produced meaningful words in the previous background

(e.g.,WORE) are no longer meaningful in a new background (e.g., WONE). Similarly,

letters that were nonviable may become permissible (e.g., DORE versus DONE). In this

way, the position-specific landscape is dependent on the background sequence. In proteins,

site-specific preference landscapes undergo similar dynamics—such context-dependence

is referred to as epistasis.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

WORD

WORE

GORE

GONE

GENE

meaningless meaningfulFirst position fitness landscape

Figure 4.2: Depicting epistatic dynamics using Maynard Smith’s (1970) word game
analogy of protein evolution. The fitness landscape at the first letter position changes as
letters at other positions change. Fitness is binary: a word is either meaningful or not. The
provided trajectory is from Maynard Smith (1970). These dynamics are akin to epistatic
dynamics in protein evolution where site-specific fitness landscapes depend on the residues
present at other sites in the protein.

It is important to differentiate between shifts in S2S landscapes and shifts in site-

specific landscapes. A change in the protein’s environment or function will lead to a shift

in the ordering of preferred sequences and hence a shift in the S2S landscape. Such a

shift is analogous to a change in the definition of a meaningful word (e.g., Spanish rather

than English words are considered meaningful). The evolutionary response to a shift in

the S2S landscape is often considered adaptive with an excess of beneficial substitutions

compared to neutral or deleterious fixations. Alternatively, site-specific fitness landscapes

can change solely due to epistasis in the absence of any external change. In this scenario,

the proportions of beneficial and deleterious (fixed by random genetic drift) substitutions

remain equal at equilibrium (Goldstein, 2013). As such, changes in site-specific landscapes

are often considered nonadaptive when the S2S landscape is unchanged. Here, I will

refer to adaptive shifts as changes in site-specific fitness landscapes in conjunction with
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a shift in the S2S landscape. Alternatively, nonadaptive shifts constitute changes in site-

specific landscapes caused by the interplay of mutations, drift, and selection on a fixed

S2S landscape.

For most proteins, a prerequisite to proper biological functioning is correct folding

into a native structure in which the protein is sufficiently stable. As such, many authors

have investigated the level of nonadaptive preference shifts by modeling stability-mediated

epistasis and found that amino acid preferences changed over time (Pollock et al., 2012;

Youssef et al., 2020; Shah et al., 2015). In particular, Pollock et al. (2012) observed

a tendency for the preference for a newly substituted amino acid to increase through

adjustments at other sites in the protein. They refer to this as an evolutionary Stokes shift,

analogous to the spectroscopy effect known as the Stokes shift where a molecule receives

a quantum of energy, moves to a higher energy state, and adjusts to the new state by

emitting a smaller quantum of energy than was first absorbed. More recently, evidence for

the opposite trend, where the preference for the resident amino acid decreases over time,

was observed (Chapter 3). This phenomena was dubbed as the evolutionary anti-Stokes

shift. Using a different stability model, Shah et al. (2015) observed similar trends where

substitutions were often entrenched, becoming increasingly deleterious to revert over time,

and were usually contingent on prior substitutions that increased their fixation probability.

While entrenchment and evolutionary Stokes shifts have been used interchangeably

(Rodrigue and Lartillot, 2017; Bastolla et al., 2017; Teufel et al., 2018), they are related yet

distinct phenomena. Briefly, a substitution may be entrenched “by-any-means” (adaptive

or nonadaptive); whereas an evolutionary Stokes shift refers to the increase in preference

of a residue by nonadaptive stability-mediated effects. An evolutionary Stokes shift may

lead to an entrenched allele; however, not all entrenched alleles are conserved because

of an evolutionary Stokes shift. Similarly, the notion of contingency and evolutionary

anti-Stokes shifts are related yet not synonymous.

To illustrate their differences, consider an adaptive episode where a protein was

evolving in the context of environment A when an external change occurs (environment

B) with a shift in the S2S landscape and accompanying changes in the site-specific

landscapes. Let us consider the dynamics at a focal site. In environment A, amino

acid alanine (one-letter code A) was the most preferred residue at a site (figure 4.3). In

environment B, the site’s preferences change such that valine (one-letter code V) is now
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the most preferred residue. Positive selection will likely lead to the fixation of beneficial

substitutions that increase fitness, resulting in the fixation of the newly favoured amino

acid V. The substitution to V is therefore contingent on the environmental change that

increased its favourability. Once on (or near) the new landscape peak, mutations away from

amino acid V will be purged by purifying selection. The beneficial effects of subsequent

mutations at other sites may depend on the presence of V as part of the genetic background.

As such, substitution away from V may become increasingly deleterious, leading to its

entrenchment. In this way, a residue may be contingent and subsequently entrenched

through an adaptive process.

Alternatively, a substitution may be contingent on or become entrenched by nonadap-

tive processes. Suppose that, instead of an environmental change, a mutation is fixed by

drift at another site in the protein, changing the preference landscape at the site of interest.

Such a shift in the landscape could increase the preference for alanine (an evolutionary

Stokes shift) or decrease it (an evolutionary anti-Stokes shift). Given an increase in the

preference for A, substitutions away from A are unlikely to be fixed leading to its conser-

vation, or entrenchment. Alternatively, if the landscape shift resulted in a decrease in the

preference of the resident amino acid such that another amino acid is the fittest at the site

(e.g., V, figure 4.3), then the subsequent fixation of V is contingent on the change in the

background sequence. These examples offer snap-shots of different preference landscapes.

In natural protein evolution, these processes are dynamic and gradual over long periods

(Pollock et al., 2012).
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Figure 4.3: Adaptive evolution often causes substantial shifts in amino acid preferences.
For example, suppose a change occurs in the protein’s environment (e.g.,a change in
an interacting protein or a ligand; depicted by the red circle or green triangle), then the
landscape shifts from having a strong preference for amino acid alanine (one-letter code
A), to strongly preferring valine (one-letter code V). Nonadaptive evolution can also cause
shifts in preferences. Following a substitution at another position in the protein (depicted
with an X), the fitness landscape at a focal site could increase the preference for A or could
change the ordering of amino acid preferences such that V is the most preferred residue.
Evolutionary Stokes and anti-Stokes shifts are gradual phenomena that could in the long
run lead to these example landscapes.

Shifted preferences can have significant consequences for protein evolution. Dobzhansky-

Muller incompatibilities, where a mutation is neutral (or beneficial) in one protein but

is pathogenic in a homologous protein, highlight the potential significance of shifted

preferences on speciation (Kondrashov et al., 2002). Furthermore, entrenched substitutions

play a significant role in maintaining molecular complexes (Hochberg et al., 2020). It is,

therefore, crucial to understand the drivers of shifted preferences. My aim in this review is

an attempt to quantify the magnitudes and frequencies of nonadaptive shifts in preferences.

4.4 Evidence of preference shifts from multiple
sequence alignments

A challenge with estimating shifts in preferences is that they are not directly observable

in extant sequences. However, models which permit variation in site-specific preferences

make explicit predictions that can be validated or refuted by patterns in natural alignments.

Analysis of natural proteins often reveals evidence for temporal variation in replacement

rates and homoplasy rates (reversions, convergence, and parallelism). Are these patterns

explainable by nonadaptive processes, or are they the result of adaptive evolution? As

reviewed below, in most instances, the observed patterns are consistent with predictions
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from nonadaptive epistatic models.

4.4.1 Convergence rates

Convergence refers to the evolutionary phenomenon whereby similar traits emerge inde-

pendently in multiple lineages. Convergence may occur at the phenotypic level, such as

the origins of wings in bats and birds (Stern, 2013), or echolocation in bats and toothed

whales (Parker et al., 2013). Phenotypic convergence is commonly viewed as evidence of

adaptations of different lineages to similar environmental challenges (Mcgee and Wain-

wright, 2013). Alternatively, molecular convergence, the emergence of identical states

(nucleotide, codon, or amino acid) in two independent lineages, is not convincing evidence

of adaptation since they could happen by chance owing to the limited number of possible

states at a site. Independent changes from the same ancestral state to the same derived

state, are convergent substitutions that transpired in parallel (figure 4.4).

Figure 4.4: Examples of molecular homoplasy. Convergence refers to substitutions at
independent lineages from different ancestral states to the same derived state. Parallelism
refers to independent substitutions from the same ancestral state to the same derived state.
Reversion refers to a change from a derived state back to an ancestral state.

Evidence of convergent substitutions abounds (Parker et al., 2013; Thomas and Hahn,

2015; Zou and Zhang, 2015b; Goldstein et al., 2015; Zou and Zhang, 2015a; Mendes et al.,

2016). An adaptive explanation would suggest that convergent substitutions are due to

similar selection pressures in different taxa. For example, Parker et al. (2013) compared

22 mammalian genome sequences (composed of 2,326 orthologous proteins) and reported

rampant levels of convergent substitutions. They concluded that adaptive molecular

convergence is widespread and explains the independent evolution of echolocation in bats

and whales. However, their conclusions were challenged by two subsequent studies which

reanalyzed their (and additional) data and found that convergence levels between bats

and toothed whales are no greater than the levels of molecular convergence between bats

and cows (Zou and Zhang, 2015b; Thomas and Hahn, 2015). These studies highlight
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that rigorous assessments of the prevalence of adaptive convergence require properly

formulated null models. Such null models allow us to assess whether it is necessary to

invoke adaptive processes to explain the observed patterns of substitution.

The simplest models for sequence evolution assume equal substitution rates between

states. When applied to amino acids, it is referred to as the Poisson model which assumes

that all amino acids have the same fitness effect so that site-specific landscapes are uniform

at all sites and are constant across time. The Poisson model predicts a relatively constant

and low level of convergence rates as proteins diverge. However, evidence of convergence

in natural datasets often exceeds the levels of convergences predicted by the Poisson

model, and the level of convergence in natural alignments usually decreases as sequences

diverge. Therefore, using the Poisson model as a null model, one might inaccurately

reject the null in favour of an adaptive explanation. However, models which account for

differences in rates of exchange among amino acids, e.g.,WAG (Whelan and Goldman,

2001), and models that allow for variability across sites, e.g.,MutSel (Halpern and Bruno,

1998), predict higher levels of convergence than the Poisson model, and declining levels

with time. Nonetheless, rates of convergence inferred from natural alignments exceed the

levels predicted by these heterogeneous models. A limitation of these models is that they

do not account for epistasis. Independently, Goldstein et al. (2015) and Zou and Zhang

(2015a) showed that accounting for epistatic interactions leads to patterns and levels of

convergence rates in line with observations in natural data. Their work highlights that

understanding substitutions patterns under epistatic models are imperative for accurately

detecting adaptive evolution. In box 1, I review two datasets with declining convergence

rates. In both datasets, the observed patterns are consistent with nonadaptive epistatic

dynamics.

Why do convergence levels decrease over time under epistatic models? To illustrate

this, let us again consider Maynard Smith’s word game analogy. The first-position fitness

landscapes are more similar when the background sequences have fewer differences (for

example, consider the first position landscapes given background sequences -ORD and

-ORE; figure 4.2). As more differences accumulate (e.g., -ORD and -ENE), the first-

position landscapes become more dissimilar (Usmanova et al., 2015). Similarly, in protein

evolution, as sequences diverge the amino acid preference landscapes accumulate more

differences. Nevertheless, structural or functional constraints may limit variability in
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amino acid preferences across diverged proteins. The extent to which such restrictions

limit variability in preferences, however, is still unknown.

4.4.2 Reversion rates

Reversion describes a return to an ancestral state during evolution (figure 4.4). Molecular

reversions are common in natural sequences (Rokas and Carroll, 2008; Breen et al., 2012;

Naumenko et al., 2012). More than a century ago, Muller (1918, 1939) hypothesized that

epistasis causes reversion rates to decrease with time. McCandlish et al. (2016) proved that

involvement in at least one epistatic interaction is sufficient to cause decreases in reversion

rates and that in the absence of epistasis reversions rates are constant through time.

Naumenko et al. (2012) analysed two datasets of genome-wide alignments from

vertebrates (7,967 genes from 9 species) and insects (8,477 genes from 8 species). In

both datasets, they observed decreases in reversion rates as sequences diverged, consistent

with expectations under epistatic models (McCandlish et al., 2016). Epistasis can lead to

diminishing rates of reversion through (1) a nonadaptive increase in fitness for the derived

residue (i.e., an evolutionary Stokes shift), or (2) a nonadaptive decrease in the fitness

of the replaced residue (Naumenko et al., 2012). Naumenko et al. (2012) argued that

the second effect is stronger and that “negative epistatic interaction with currently absent

amino acids” is responsible for most of the observed declines in reversion rates.
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4.4.3 Replacement rates

Another signal commonly observed in natural alignments is changes in replacement rates

over time, or heterotachy. Various adaptive and nonadaptive mechanisms can produce this

signal. For example, evolution on a static site-specific fitness landscape, in the absence

of both epistatic and adaptive processes, can lead to heterotachy (Jones et al., 2017).

On a static landscape, a chance fixation to a suboptimal amino acid is followed by a

period of positive selection restoring the site to its optimal state, a process referred to as

nonadaptive shifting balance (Jones et al., 2017). Alternatively, heterotachy can also be

caused by changes in site-specific fitness landscapes because of epistasis. Changes at other

positions can lead to a more uniform fitness landscape having higher substitution rates, or

a more rugged landscape with fewer opportunities for change (Gong et al., 2013). Lastly,

heterotachy may also occur because of changes in the S2S landscape congruent with an

adaptive episode—the shift in the S2S landscape is often followed by a period of high

substitution rates as the protein adapts to the new conditions (dos Reis, 2015; Jones et al.,

2017). Given the diversity of processes that can lead to heterotachy, accurate interpretation

of the mechanisms at play in natural data is challenging.

Can heterotachy from adaptive versus nonadaptive evolution be distinguished? Two

studies have recently suggested that nonadaptive and adaptive processes cause idiosyn-

cratic variations in replacement rates (Popova et al., 2019; Stolyarova et al., 2020). They

hypothesized that epistasis causes a reduction in replacement rate with time, while adaptive

evolution leads to increases in rates. The reason, they suggest, is that adaptive shifts in

preferences often render the current state suboptimal for the new conditions. Positive

selection will restore equilibrium through the subsequent fixations of beneficial substitu-

tions, leading to an increase in substitution rate following the landscape shift. In contrast,

nonadaptive evolutionary Stokes shifts increase the favorability of the resident amino acid.

Such an increase in favourability leads to declining rates of replacement. However, the

existence of an evolutionary anti-Stokes shift—where decreases in resident amino acid

favorability lead to increases in replacement rates—challenges this claim (Chapter 3).

In this way, both adaptive and nonadaptive processes may lead to an increase in

replacement rates over time. Nevertheless, I hypothesize that heterotachy caused by

adaptive and nonadaptive processes can be differentiated. In the absence of adaptations,

a balance is expected in the frequency and magnitude of both evolutionary Stokes and
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anti-Stokes shifts (Chapter 3). This balance suggests that under nonadaptive evolution, the

proportion of sites that experience increases in replacement rates should be approximately

equal to the proportion experiencing a decrease in rate. Alternatively, adaptive shifts will

lead to an excess of sites with increased rates compared to the proportion of sites for which

replacement rates decreased. This is akin to the expectations of the proportions of beneficial

and deleterious substitutions under adaptive and nonadaptive processes. Under nonadaptive

evolution, a balance exists in the proportions of beneficial and deleterious substitutions.

However, following an adaptive change, the proportion of beneficial substitutions exceeds

that of deleterious substitutions (dos Reis, 2015; Jones et al., 2017). While the dynamics

of landscape shifts under adaptive evolution are yet to be thoroughly investigated, I

suspect that adaptive episodes will analogously lead to an excess in the proportion of sites

undergoing increases in substitution rates relative to the proportion of rate decreasing sites.

I summarise the results from three recent studies investigating changes in replacement

rates in table 4.1. In the reported datasets, the number of rate accelerating or decelerating

sites is comparable—except for the hemagglutinin H3 subtype protein where a higher

number of accelerating sites was observed (12 accelerating sites and only four decelerating

sites). The sites with the largest increase in replacement rates were experimentally shown

to affect antigenic properties (Popova et al., 2019). The observed increase in rates in the

H3 protein may be a true signal of adaptive evolution. Nevertheless, the similar numbers

of accelerating and decelerating sites in all other proteins are in line with the expectations

from nonadaptive epistatic models (Chapter 3). The results presented in table 4.1 are

from a relatively narrow range of proteins, making it difficult to draw general conclusions.

Future work establishing the differences and similarities in variability in replacement rates

due to adaptive versus nonadaptive processes is warranted.
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Table 4.1: Number of rate accelerating sites is often equal to the number of rate decelerating
sites inline with expectations from nonadaptive epistatic models.

Reference Dataset Rate
increases

Rate
decreases

Total
num. of
alleles

Popova et al. (2019)

H1 proteins from 1,613 strains
N1 proteins from 2,015 strains
H3 proteins from 1,832 strains
N2 proteins from 1,996 strains

0
0

12
8

2
0
4
5

83
82

117
93

Stolyarova et al. (2020)
Five mitochondrial genes

across 3,557 metazoan species
28 21 42,637

Gelbart and Stern (2020)
Nine proteins across

126 HIV-1/SIV strains
134 137 5,902

4.5 Experimental evidence of shifts in preferences

While the patterns discussed above—decreases in homoplasy rates with divergence levels,

and patterns of heterotachy—are consistent with temporally varying preferences, they

could have arisen by nonepistatic mechanisms. For example, inaccurate tree inference

could lead to diminishing rates of convergence (Mendes et al., 2016), or nonadaptive

shifting balance can lead to the observed heterotachy (Jones et al., 2017). A more direct

approach for inferring preference shifts driven by epistasis is to compare mutational effects

across background sequences. If variations in preferences due to epistasis are minor, then

a mutation should have a similar phenotypic effect regardless of the background sequence.

Alternatively, if preferences depend heavily on sequence-context, then mutational effects

will vary across different background sequences. Until recently, experimental methods

were restricted in the number of mutations they can introduce (Fowler and Fields, 2014).

Most studies performed one of three types of pairwise amino acid replacements (figure

4.5): (1) Forward mutations by replacing the residue in an ancestral protein with a derived

state; (2) Backward mutations which introduce an ancestral state into an extant protein;

and (3) Exchange mutations by replacing the resident amino acid in one protein with the

resident residue in an orthologous protein.
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Anc

H1

H2

backw
ard

forward

exchange

Ancestor Homolog 1 Homolog 2

forward backward exchange

Figure 4.5: Diagram representing the different mutation experiments. Forward substitu-
tions place a derived amino acid into the context of an ancestral (Anc) sequence. Backward
substitutions place an ancestral amino acid in the context of an extant sequence. Exchange
substitutions refer to changing the resident amino acid in one homolog (e.g.,E in H1) with
the resident amino acid in another (e.g.,F in H2). Forward and backward substitutions are
shown in solid lines. Exchange substitutions are shown in dashed lines.

4.5.1 Effects on stability

Protein stability is a holistic property determined by all residues. A stabilizing mutation

in one sequence may be destabilizing in another. To investigate the dependence of the

stability effect of a mutation on the background protein sequence, Ashenberg et al. (2013)

introduced the same mutations into a series of diverged homologs of the influenza nu-

cleoprotein (NP). Specifically, they separately introduced six mutations (I186V, V239M,

L259S, A280V, H334N, G384R) into four NP homologs (Brisbane/2007, Aichi/1968,

California/2009, bat/2009). The level of sequence divergence relative to the Brisbane/2007

sequence is 8% with Aichi/1968, 10% with California/2009, and 28% with bat/2009. They

observed that stability effects of mutations were conserved across background sequences:

only a single mutation induced a substantial shift in stability effects (A280V). The sub-

stitution from A → V at site 280 was stabilizing in the context of the Brisbane/2007,

Aichi/1968, and California/2009 sequences, but was destabilizing in bat/2009 NP. Analysis

of their data revealed that the standard deviation in mutational effects on melting tem-

perature across background sequences was on average 0.86◦C. Furthermore, the stability

effects of mutations in the context of different homologous proteins were significantly

correlated. However, correlations decreased as sequence divergence increased: the correla-

tion in stability effects of mutations between Brisbane/2007 and Aichi/1968 (8% sequence

divergence) was 0.90, falling to 0.89 in California/2009 (10%sequence divergence), and

0.82 in bat/2009 (28% sequence divergence).

To assess how stability effects of mutations change over time, Risso et al. (2015) per-

formed forward and backward substitutions between extant and ancestral reconstructions of
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thioredoxin proteins. Specifically, they assayed stability effects in the context of the extant

E. coli protein and a resurrected protein present in the last bacterial common ancestor

(LBCA). These proteins differ at 44% of sites. They introduced 21 mutations of the types

E ↔ D, I ↔ V into both background sequences and assayed their effect on stability. The

stability effects in the LBCA and E. coli thioredoxin proteins were strongly correlated

(Pearson correlation coefficient of 0.89). Only 2 of the 21 mutations were stabilizing in

one protein and destabilizing in the other. In general, stability effects were within the

range of ±1 kcal/mol. These results suggest that stability effects among biochemically

similar amino acids (E and D, V and I) are conserved over long evolutionary time scales

(approximately 4 billion years). To investigate the generalizability of this observation

to biochemically dissimilar mutations, Risso et al. (2015) introduced L ↔ K mutations

across a series of ancestral thioredoxin proteins, and T ↔ M mutations across ancestral

β-lactamases. Variability in stability effects was more pronounced in the L ↔ K and T ↔
M mutations than in the E ↔ D and V↔ I mutations. Nevertheless, the most energetically

preferred amino acid at a site remained the same in the extant and ancestral proteins.

The experimental studies reviewed above investigated the stability effects of a limited

number of mutations. Alternatively, simulations of stability-constrained evolution allow for

a more comprehensive assessment of stability effects across a wide range of background

sequences (Pollock et al., 2012; Shah et al., 2015). Shah et al. (2015) simulated the

evolution of the lysine-arginine-ornithine-binding periplasmic protein (argT) using the

force-field approach FoldX to estimate stability. They performed forward and backward

mutations in silico and assayed the stability effects across all background sequences.

They observed that variability in stability effects was common in frequency, yet minor in

magnitudes. On average, stability effects were within 0.8 kcal/mol. In summary, theoretical

and experimental investigations reveal that stability effects of mutations are conserved

across background sequences, consistent with the expectation that fitness effects are often

nearly neutral at mutation-selection-drift equilibrium (Cherry, 1998; Goldstein, 2011).

4.5.2 Effects on function

The previous results suggest that stability effects of mutations are conserved across diverged

sequences. Are functional effects of mutations similarly conserved, or is protein function

highly attuned to the background sequence such that functional effects of mutations differ

substantially across background sequences?
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Lunzer et al. (2010) were amongst the first to investigate the functional effects of

mutations in orthologous proteins. They individually introduced 168 mutations into the

wild-type E. coli isopropyl malate dehydrogenase (IMDH) protein and assayed their impact

on enzyme performance (kcat/Km). At each site, they performed exchange mutations with

the resident amino acids present in the P. aeruginosa IMDH homolog. The vast majority

of single mutant enzymes (104/168) performed similarly to the wild-type IMDH proteins,

suggesting that functional effects of mutations are conserved.

Emlaw et al. (2020) compared the effects of mutations on single-channel conductance

using human muscle-type acetylcholine receptor (AChR) and an ancestral AChR (the AChR

present in the last common ancestor between humans and cartilaginous fish). The proteins

differed at 36% of sites. At two sites where the resident amino acids differed between the

two proteins (sites 2 and 6), they performed backward substitutions, placing the ancestral

amino acids into the human AChR (mutations G2T and F6S). They also performed forward

substitutions, placing the derived amino acids into the ancestral sequence (mutations T2G

and S6F). Lastly, they introduced the double mutants into both the extant and ancestral

proteins. Analysis of their data revealed high concordance between the effects of the

studied mutations in the different background sequences (Pearson correlation was 0.90).

Starr et al. (2018) performed forward and backward replacements between a heat

shock protein 90 (Hsp90) ATPase domain present in modern Saccharomyces cerevisiae

(ScHsp90) and a deep eukaryotic ancestor (ancAmoHsp90, the common ancestor of

Amorphea). In particular, their analysis focused on the N-terminal domain (NTD). The

ancestral and extant NTDs differ at 60 of 221 sites (27% sequence divergence). They

individually introduced each ancestral amino acid into the extant ScHsp90 protein and

each derived state into ancAmoHsp90. Then, they estimated the fitness of yeast cells

carrying the mutant proteins by measuring the change in the ratio of a mutant to wildtype

frequency over time. Approximately 48% of derived states reduced fitness when placed

in the context of the ancestral NTD, 32% were neutral, and 20% were beneficial. When

placed in the modern NTD, 92% of ancestral amino acids were deleterious, 7% were

neutral, and 1% were beneficial. Across all mutations studied, 77% had different impacts

on fitness depending on the background sequence. However, the effects of most mutations

were minor: the average selection coefficient was −0.02, and −0.01 for backward and

forward substitution, respectively. Note that the relatively small selection coefficient does
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not imply that epistasis plays a minor role in protein evolution. Even a relatively small

degree of nonadditivity in the effects of mutations can have a considerable impact on

evolutionary processes (Shah et al., 2015).

4.5.3 Quantifying the frequency and magnitude of shifts in prefer-
ences using Deep Mutational Scanning (DMS)

The previously discussed studies were limited to a small number of mutations. However,

recent advancements, known collectively as deep mutational scanning (DMS), allow us

to estimate the fitness effect of all single amino acid mutations at many (or all) sites in a

protein (Fowler and Fields, 2014; Hietpas et al., 2011). First, a single-mutant library of

proteins is created. The mutants are then subjected to a selection or screen in which the

frequency of each genotype in the library is measured using deep sequencing. Fitness can

then be estimated from the frequency measures. One approach is to evaluate a mutant’s

frequency relative to the wildtype over time as a measure of fitness (Starr et al., 2018).

Others have used the relative frequency of a mutant pre- and post-selection as a measure

of the mutant’s fitness (Bloom, 2015). More sophisticated Bayesian approaches which

correct for low sequencing depth have also been developed (see Bloom (2015) for a

detailed description of models used to analyse DMS data and software implementations).

While DMS approaches are a powerful tool for assessing the extent of shifts in amino

acid preferences, the level of experimental noise is often high. Site-specific landscapes

estimated from replicate experiments can have correlation coefficients as low as 0.59

(Haddox et al., 2018; Doud and Bloom, 2016).

Despite its recency and potential limitations, DMS methodologies have been used to

estimate site-specific fitness landscapes in many proteins in various organisms. Livesey

and Marsh (2020), report on the results from 31 publicly available DMS datasets: 13

from human proteins, 9 from bacterial proteins, 5 from yeast proteins, and 4 viral proteins.

However, only four studies have applied DMS to homologous proteins (Doud et al., 2015;

Lee et al., 2018; Haddox et al., 2018; Chan et al., 2017). Six datasets from these four

studies are available to compare site-specific preferences across different background

sequences (table 4.2). Three studies were carried out in viruses (Haddox et al., 2018;

Lee et al., 2018; Doud et al., 2015). The fourth study (Chan et al., 2017) compared

site-specific fitness landscapes in orthologous indole-3-glycerol phosphate synthase (IGPS)

proteins present in the archaeon Sulfolobus solfataricus (ssIGPS) and in two bacteria:
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Thermotoga maritima (TmIGPS) and Thermus thermophilus (TtIGPS). Collectively, the

studies compare site-specific landscapes across sequences with as little as 6% and up to

73% sequence divergence.

There are broadly two ways of comparing site-specific landscapes across different

sequences. The first approach is to calculate correlation coefficients between landscapes.

This has been done in two ways (figure 4.6): (A) calculate the landscape correlation at

homologous sites, and report the mode of the correlation coefficient distribution (Rmode;

figure 4.6A); or (B) concatenate all landscapes and estimate a single overall correlation

coefficient (Roverall; figure 4.6B). Chan et al. (2017) used the first approach and found

that site-specific landscapes were significantly correlated (with modes ranging from 0.62

and 0.72; table 4.2). Alternatively, Bloom and colleagues report the overall correlation

from the second approach: Roverall ranged from 0.36 to 0.72 (Doud et al., 2015; Haddox

et al., 2018; Lee et al., 2018). It is currently unclear if both approaches lead to similar

correlation estimates and hence similar biological conclusions.

To compare the two correlation approaches, Rmode and Roverall, I reanalyzed the

datasets from Chan et al. (2017) and Haddox et al. (2018) using both methods. Note that

Haddox et al. (2018) conducted three replicate experiments for each homologous protein

(BF520 and BG505). It is valuable to obtain the across-replicate average landscapes prior

to obtaining correlations (see box 2 for more details). I report the correlations between site-

specific landscapes given the different background sequences in figure 4.6C and 4.6D. It is

clear from this analysis that Rmode and Roverall can differ; specifically, Rmode > Roverall in

the four datasets. The largest difference is observed in the TmIGPS – TtIGPS comparison

where Rmode and Roverall differ by 0.20. Because fitness profiles can be expected to vary

substantially over sites, conditioning on a site by reporting site-specific correlations may

be more statistically robust and is more informative regarding the dynamics at a site. For

example, it is evident from the site-specific correlation distributions that most landscapes

correlate strongly (R > 0.5). However, some sites have landscapes that are negatively

correlated. A negative correlation of the preference landscape given different genetic

background indicates substantially shifted amino acid preferences, which might suggest

different functional or structural constraints in the different proteins. For these reasons, the

Rmode approach may be preferable for comparing the correlations between site-specific

landscapes given different background sequences.
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Haddox et al 2018 Chan et al 2017

BF520 – BG505 SsIGPS – TtIGPS SsIGPS – TmIGPS TmIGPS -- TtIGPS

Rmode 0.90 0.70 0.58 0.62

Roverall 0.74 0.46 0.43 0.42
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Figure 4.6: Different approaches for comparing correlations between site-specific land-
scapes across different background sequences. The first approach (A) estimates the
correlation between landscapes at homologous sites given different background sequences
and reports the mode of distribution (Rmode). The second approach (B) concatenates all
site-specific landscapes and estimates an overall correlation value (Roverall). (C) Distribu-
tion of site-specific correlation values from four deep mutational scanning experiments.
The BF520 - BG505 dataset is from Haddox et al. (2018). The remaining datasets are
from Chan et al. (2017). Percentages in parentheses are the percent sequence divergence
between the two proteins. (D) Reports the values of Rmode and Roverall from the four
datasets. Reported correlations for the BF520 - BG505 dataset are from site-specific fitness
landscapes averaged over replicate experiments.
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In order to accurately detect shifts in preferences using DMS data we must account

for high amounts of experimental noise. Therefore, a second approach for quantifying

shifts in amino acid preferences compares the distance between two landscapes using the

Jensen-Shannon distance metric (Doud et al., 2015) (see box 3 for detailed discussion).

The distance is equal to zero when amino acid preferences are identical, and is one if the

preferences are dissimilar. The distance approach accounts for the level of variability in site-

specific landscapes due to experimental noise by estimating the average root-mean-square

distance within replicate experiments (RMSDwithin). The distance between site-specific

landscapes in homologs is similarly calculated (RMSDbetween). The magnitude of shift

at a site (RMSDcorrected) is then calculated as the difference between RMSDbetween and

RMSDwithin. At each site RMSDcorrected provides a measure of the magnitude of the shift

in preference while calibrating for experimental noise. Furthermore, the RMSDcorrected
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approach can be used to quantify the prevalence of significantly shifted sites. To do this, a

null distribution of RMSDcorrected values is generated through an exact permutation test by

reassigning site-specific landscapes among the two protein groups. If preferences have not

shifted significantly between the two proteins, then the true distribution of RMSDcorrected

values should be similar to the null distribution. This method can be used to identify sites

for which the null hypothesis of no shifts is rejected. Note that permutation tests can be

conservative because they construct a null distribution from data that may instead support

the alternative hypothesis. As such, this approach may be susceptible to high false negative

rates.

Homolog 1 Homolog 2
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Doud et al. (2015) performed DMS on two homologs of influenza A virus (IAV)

nucleoproteins (NP) in the H1N1 and H3N2 viral strains. The proteins differed at 6%
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of sites. Using the RMSDcorrected approach, they found that only a modest fraction of

sites exhibited significant shifts in amino acid preferences: at a false discovery rate of

0.05, 14 of 497 sites (2.8%) showed evidence of significantly shifted preferences. Haddox

et al. (2018) used the same method to quantify the magnitude and prevalence of shifted

preferences between homologous HIV envelope (env) proteins that differ at approximately

14% of sites. Only 30 of the 659 sites (4.6%) showed evidence of significantly shifted

preferences (at an FDR of 0.01). Lee et al. (2018) performed a similar analysis between

homologous hemagglutinin (HA) proteins present in influenza viruses H1N1 and H3N2.

The proteins were highly diverged, having 58% sequence divergence. The number of

significantly shifted sites was not reported. However, it is evident from the distribution of

RMSDcorrected (figure 7C in Lee et al. (2018)) that a large number of sites had significantly

shifted preferences. Also, the magnitude of the shifts was more pronounced than in other

DMS studies. For example, the largest RMSDcorrected reported in Doud et al. (2015) was

0.45, whereas RMSDcorrected values were as high as ≈ 0.8 between the hemagglutinin

homologs.
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A challenge with assessing shifts in preferences using the correlation approaches is

that, while it is clear that correlations between landscapes inferred from homologs are

lower than correlations from biological replicates, it is unclear if the observed decreases

are significant. As such, the RMSDcorrected approach is more preferable for detecting

significantly shifted preferences. Nonetheless, a limitation of the RMSDcorrected approach

is that it cannot distinguish between instances where the order of amino acid preferences

has changed versus cases where there is an intensification (or relaxation) of selection

between sequences. An example of this is provided in figure 4.7. Amino acid alanine

(one-letter code A) is the most prefered residue at site 512 in both homologs of the env

protein (Haddox et al., 2018). However, site 512 is more mutationally tolerant in the

context of the BG505 sequence versus the BF520 background. Conversely, at site 288,

there is a clear shift in the ordering of amino acids. Despite having different shifted

dynamics, the RMSDcorrected approach estimates a similar degree of shift at sites 288 and

512. Alternatively, the Pearson correlation between landscapes is substantially lower for

site 288 (figure 4.7), highlighting that the correlation approach might be more suitable

for identifying sites having different preferred amino acids given different background

sequences.

Figure 4.7: Correlation approach is better at identifying a reordering of amino acid
preferences compared to the RMSDcorrected approach. Site-specific preference landscapes
in homologous envelope proteins in HIV strains BG505 and BF520. Shown are the across-
replicate average preference landscapes at a site. The reported shift is the RMSDcorrected

values. The reported R value is the Pearson correlation coefficients between site-specific
preference landscapes. Data obtained from Haddox et al. (2018) under the Creative
Common Attribution license.

Deep mutational scanning is a promising tool for quantifying the magnitude and

prevalence of shifted amino acid preferences. In addition to the analyses discussed above,

data from DMS can be used to assess multiple additional questions: How often is a
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substitution deleterious in one protein but beneficial in another? How often does the most

preferred amino acid at a site differ across background sequences? How often are the

detected shifts due to a reordering of the preferred amino acid versus a relaxation (or

intensification) of selection pressure? Answers to these questions can be illuminated using

data from DMS.

4.6 Limitations

The studies reviewed above suggest that temporal variability in amino acid preferences

is usually minor in magnitude and low in frequency. However, each of the methods

used for inferring preference shifts has potential limitations. Detecting variations in rates

of homoplasy or replacement rates in natural alignments are indirect ways of assessing

preference shifts. While theoretical models suggest that epistasis could result in the

observed signal, other mechanisms may also be at play (Mendes et al., 2016). Alternatively,

deep mutational scanning approaches allow for a more direct assessment of site-specific

preferences in different background sequences. These approaches offer snap-shots of

preference landscapes in the context of different sequences but tell us little about the trend

of change over time. For example, we cannot use current DMS data to assess if changes in

preference are abrupt or gradual. Nevertheless, comparing preference landscapes between

ancestral and extant proteins (as done in Starr et al. (2018)) to track how preferences

change over time is valuable for understanding trends in preference shifts.

Deep mutational scanning data currently available to assess shifts in preferences

is limited. There are only four studies that compared preference landscapes between

homologous protein sequences (table 4.2), and only one of which compares orthologous

bacterial and archeal proteins (Chan et al., 2017). The remaining three studies were

conducted in viruses, specifically RNA viruses. The high mutation rates in RNA viruses

may have selected for loosely packed protein structures which buffer the deleterious effects

of mutations (Tokuriki et al., 2008). This would suggest that the low levels of mutational

effects observed in these experimental settings may not generalize to non-viral proteins.

This has led to concerns regarding the utility of viral DMS data in more generally assessing

levels of preference shifts (Pollock and Goldstein, 2014). However, results from Chan

et al. (2017) corroborate that drastic shifts in preference landscapes are usually rare in non-

viral proteins even at high levels of sequence divergences. Furthermore, Ferrada (2019)
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curated a dataset of 124 pairs of homologous protein (sequence divergences ranged from

0-100%) and computationally estimated site-specific landscapes using FoldX. Using the

RMSDcorrected approach, they observed that the number of sites with significantly shifted

preferences increases with sequence divergence. Nevertheless, even at 100% sequence

divergence on average less than 30% of sites had significantly shifted preferences. This

study only modelled the effects of stability. Additional functional and structural constraints

on natural proteins may further limit the amount of variability in preferences.

4.7 Consequences of shifts for time-homogenous
evolutionary models

One way of deducing information about evolutionary processes is to analyze multiple

sequence alignments with a quantitative model of sequence evolution. Two widely used

classes of evolutionary models are phylogenetic models used to infer relationships between

taxa and ω models used to estimate selection intensity. Inference procedures for either

class of models often assume that the evolutionary process is identical across sites and

constant through time. Specifically, most models assume (1) independent evolution across

sites, (2) time-homogeneous substitution processes, and (3) a common vector of stationary

frequencies; assumptions that are all violated in the presence of epistasis.

Various amendments have been applied to allow for heterogeneity (spatial and tem-

poral) in the evolutionary process in both phylogenetic and ω models. However, due to

the difficulty in tractably modelling co-dependencies among sites, models are limited in

the extent of heterogeneity they can account for. In practice, inference procedures model

among-site heterogeneity through a mixture model with different substitution processes as

classes in the mixture, and can allow for temporal changes in the substitution process at

prespecified branches along the tree (Yang and Nielsen, 2002; Yang et al., 2005; Zhang

et al., 2005), or using a covarion-like process (Galtier, 2001; Guindon et al., 2004; Jones

et al., 2020). More recently there has been a push towards using experimentally informed

evolutionary models where site-specific substitution processes are informed by data from

DMS (Bloom, 2014b,a; Hilton and Bloom, 2018). While these models offer improved

likelihood scores over more traditional approaches, they are limited in applicability to the

currently small number of proteins for which DMS data is available.

While the challenges associated with allowing for temporal and spatial heterogeneity

109



place a high barrier for their widespread incorporation into inference procedures, it is

nonetheless of paramount importance to understand how they may bias our inferences. To

this end, recent studies have advocated for the use of models of protein evolution with

plausible levels of spatial and temporal heterogeneity as a tool for assessing the accuracy

of inference in the face of realistic levels of heterogeneity (Spielman and Wilke, 2015;

Jones et al., 2017, 2018, 2020; Youssef et al., 2020). Simulations of stability-informed

models recapitulate levels of both spatial and temporal heterogeneity present in real data

(Youssef et al., 2020). They are therefore a powerful tool for assessing inference accuracy.

To this end, sequences are first generated under a stability-constrained evolutionary model.

The simulated sequences are then analyzed using traditional inference procedures. The

true parameter values, predicted from the generating model, are then compared to the

inferred parameters to assess inference accuracy.

Using the procedure outlined above, it is evident that traditional ω models underesti-

mated levels of among-site heterogeneity; ω models estimated only 2-4 rate classes when

a much richer distribution of rate classes (> 100) is present in the true generating process

(Youssef et al., 2020). Nevertheless, the inferred rates corresponded to the most common

substitution rates across sites. Furthermore, inclusion of a covarion-like component in the

substitution model, allowing rates at sites to vary over time, fit the data significantly better.

These results suggest that ω models need not explicitly include epistatic interactions for

reasonable inference of selection pressure when averaging over time and sites, and that

allowing for a covarion-like component seems to capture temporal heterogeneity in rates

arising due to epistasis (Youssef et al., 2020).

The procedure outlined above has not yet been implemented to assess the sensitivity

of phylogenetic inference to extensive and persistent levels of heterogeneity due to non-

adaptive stability-constrained epistasis. However, the literature assessing the accuracy of

phylogenetic inference in the face of temporal and spatial heterogeneity “by-any-means” is

vast. Simulations show that ignoring temporal heterogeneity can induce systematic errors

in phylogenetic inference, including topological and branch length inaccuracies (Magee

et al., 2020; Nasrallah et al., 2011; Kolaczkowski and Thornton, 2008, 2009; Whelan,

2008). However, it remains unclear if the level of heterogeneity arising from nonadaptive

epistatic processes is substantial enough to similarly bias our phylogenetic inferences.

In contrast with the relatively minor changes in preferences over time, differences
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in amino acid preferences among sites is substantial (Echave et al., 2016). Models

that accommodate among-site heterogeneity fit the data significantly better than site-

homogeneous models (Hilton and Bloom, 2018). This leads to the question: How can

site-specific fitness profiles be estimated? There are currently two approaches for obtaining

site-specific fitness landscapes: (1) they can be statistically inferred from large multiple

sequence alignments (e.g., Rodrigue and Lartillot (2017)), or (2) experimentally obtained

from deep mutational scans (e.g., Hilton and Bloom (2018)).

A new approach, informed by developments in the field of systems biology, might

be worth exploring. Various computational variant effect predictors (VEPs) have recently

been developed to predict the effects of mutations in a given protein sequence, often

for clinical applications. In a recent study, Livesey and Marsh (2020) compared the

performance of 46 different computational VEPs to data obtained from DMS. These VEPs

rely on various structural, evolutionary, and biophysical features (see Livesey and Marsh

(2020) for details of the different VEPs). The best performing VEP was DeepSequence

(Riesselman et al., 2018), an unsupervised machine learning approach. DeepSequence had

an average correlation coefficient between predicted and observed (DMS) landscapes equal

to 0.43 across all human proteins and 0.46 across all non-human proteins. While these

correlation coefficients are low, it is relevant to note that the average Pearson correlation

between different DMS studies on the same protein is only 0.66 (Livesey and Marsh,

2020), and correlations between replicate experiments can be as low as 0.59 (Haddox et al.,

2018; Doud and Bloom, 2016). A noteworthy limitation of the DeepSequence method

is that it necessitates the availability of large multiple sequence alignments. For proteins

where a large alignment is not available, other VEPs that rely on structural or biophysical

features, such as DEOGEN2 (Raimondi et al., 2017) and SNAP2 (Hecht et al., 2016),

may be preferable. Note that while DEOGEN2 and SNAP2 are supervised approaches,

with potential limitations related to overfitting of the training dataset, they performed well

against DMS datasets from viral, eukaryotic, and bacterial proteins.

Site-specific fitness landscapes can be estimated from VEPs and used to inform

evolutionary models. For example, site-specific frequency landscapes can be estimated

from the site-specific fitness landscapes and provided to phylogenetic models, similar

to the phylogenetic application of DMS data (Bloom, 2014b; Hilton and Bloom, 2018).

Alternatively, fitness values can be used directly in models of sequence evolution to specify
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the rates of substitutions between codons or amino acids. Bloom (2014a) proposed two

heuristic approaches of converting site-specific fitness landscapes to fixation probabilities.

These approaches were first developed in the context of DMS data but can be used to

estimate fixation probabilities from landscapes predicted from VEPs.

While we do not yet have a complete understanding of the degree of temporal shifts

in most proteins, the reviewed studies suggest that they are usually minor in magnitude

and low in frequency. These consistent yet minor perturbations in preferences can lead to

variation in rates across time; however, most inference models assume constant preferences.

Evidence is emerging highlighting the value of accounting for temporal heterogeneity

in inference procedures using a covarion-like process (e.g., Lu and Guindon (2014);

Jones et al. (2020)). Therefore, allowing for temporal variability in addition to allowing

preferences to vary across sites might lead to better models of protein evolution.

4.8 Conclusions

From the foregoing, it is clear that nonadaptive processes can alter site-specific amino acid

preferences. Experimental studies suggest that at high sequence divergence levels only a

small proportion of sites experience significantly shifted preferences (Doud et al., 2015;

Haddox et al., 2018; Lee et al., 2018; Chan et al., 2017). Extensive computational studies

(Ferrada, 2019; Shah et al., 2015) corroborate this conclusion. Furthermore, pairwise

amino acid exchange mutations between highly divergent sequences often have only minor

differential effects on fitness (Starr et al., 2018), function (Lunzer et al., 2010; Emlaw

et al., 2020), and stability (Ashenberg et al., 2013; Risso et al., 2015). Together these

results suggest that preferences at most sites vary slightly but are usually conserved over

long evolutionary time scales. Nevertheless, the frequent, but small, changes in amino acid

preferences leave an identifiable footprint in natural sequences: decreases in convergence

rates (Goldstein et al., 2015; Zou and Zhang, 2015a), reversion rates (Naumenko et al.,

2012; McCandlish et al., 2016), and variation in replacement rates (Popova et al., 2019;

Stolyarova et al., 2020; Gelbart and Stern, 2020) with time. While explicitly including

epistatic interactions between all sites is computationally prohibitive, allowing for temporal

variations in substitution processes (using a covarion-like process) and differences in

preferences across sites (determined computationally or experimentally) are tractable ways

of phenomenologically accounting for epistasis in inference models. Lastly, mutational
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effects which appear inconsequential in experimental or computational settings may

be exacerbated in nature. Further investigations into how nonadaptive processes alter

evolutionary dynamics will be important, not only to better understand how proteins evolve

but also to better identify adaptive episodes when they occur in natural proteins.
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CHAPTER 5

DIFFERENCES IN EPISTATIC
RESPONSE TO DESTABILIZING
SUBSTITUTIONS ACROSS AND WITHIN
PROTEINS

This work was done in collaboration with Scott McCain, Edward Susko, and Joseph

Bielawski.

5.1 Abstract

Protein structures have significant implications for sequence evolution. Highly designable

structures tend to have high contact densities and often evolve faster than less densely

packed structures. On a finer scale, a site’s location in the protein is strongly associated with

its substitution rate, with buried sites often having lower rates than exposed sites. While rate

dynamics have been extensively studied, it is currently unclear if the dynamics of recovery

from a destabilizing substitution differ across proteins, and/or among sites within a protein.

I perform extensive stability-informed simulations on six protein structures (PDB codes

2ppn, 1pek, 1qhw, 5jq3, 6vxx, 6nb6), which reveal that recovery dynamics differ across

and within protein structures. In particular, I investigate the relationship between various

features of protein structure and recovery time, measured as the number of compensatory

substitutions that occur prior to protein stability returning to, or exceeding, the equilibrium

stability value. In line with rate expectations, I observed that proteins with higher contact

densities tend to recover more rapidly than proteins with lower contact densities. With
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regards to within-protein dynamics, destabilizations at buried sites required a longer

recovery time than destabilizations at exposed sites. This phenomenon is explicable by

three underlying effects: (1) buried sites tend to have less uniform fitness landscapes; (2)

buried sites have lower evolutionary rates; and (3) the fitness landscapes at buried sites are

less robust to changes in the background sequence. Therefore, destabilizations at buried

sites were often more severe and required a larger number of compensatory substitutions to

recover stability than destabilizations at exposed sites. Overall, the results presented here

provide evidence that protein structure plays an influential role in shaping the evolutionary

response to destabilizing substitutions.

5.2 Introduction

Evolution, through the forces of natural selection, genetic drift, and mutation, has led

to a diversity of proteins with different structures and functions. Until recently, the

prevailing view has been that functional constraints constitute the predominant selective

pressures throughout protein evolution. For example, amongst the five principles governing

molecular evolution, Kimura and Ohta state that “[f]unctionally less important molecules

or parts of a molecule evolve (in terms of mutant substitutions) faster than more important

ones” (Kimura and Ohta, 1974). Nevertheless, it has now become apparent that while

functional pressures do exert a strong influence on rates, effect sizes are large only at a

small number of functionally relevant sites (e.g., active sites). Conversely, over the last two

decades, evidence has accumulated highlighting the importance of another, more general

constraint on proteins: structural constraints (DePristo et al., 2005; Bershtein et al., 2006;

Tokuriki and Tawfik, 2009; Bershtein et al., 2017). Unlike functional requirements, protein

structure affects all sites, having a global influence.

Two studies have systematically examined the structural underpinnings of differences

in evolutionary rates among proteins: Bloom et al. (2006) investigated yeast proteins, and

Zhou et al. (2008) extended the analyses to Escherichia coli, fruit fly, and human proteins.

The consensus from these studies is that more densely packed proteins evolve faster than

proteins with lower contact densities. Contact density is related to the designability of a

structure (Wolynes, 1996; Shakhnovich, 1998; England and Shakhnovich, 2003; Bloom

et al., 2006). The general hypothesis is that if many sequences can fold into a given

structure (i.e., it is highly designable), then most mutations will preserve sequence stability
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within the folded structure. The higher tolerance to mutations of more designable structures

leads to higher evolutionary rates (measured by the number of substitutions). Interestingly,

however, other summaries of secondary structures of proteins (e.g., the fraction of helix,

sheet, turn, or coil sites) do not significantly correlate with the rate of subsitutions (Bloom

et al., 2006; Zhou et al., 2008).

In addition to the differences across proteins, sites within the same protein typically

exhibit differences in evolutionary dynamics. The among-site rate variability observed in

natural sequence alignments is, to a large extent, driven by global structural constraints on

proteins (see Echave et al. (2016) for a review). For example, sites on the protein surface

tend to be more mutationally tolerant (i.e., can accept different amino acid mutations with

little fitness effects) and have higher substitution rates than sites towards the core of the

protein (Shahmoradi et al., 2014; Yeh et al., 2014; Echave et al., 2015; Marcos and Echave,

2015; Nisthal et al., 2019). This observation is explicable in terms of stability constraints:

buried positions play a more substantial role in folding and maintaining adequate stability

than exposed sites. Therefore, mutations at buried positions are often destabilizing and are

less likely to be fixed than mutations at exposed sites. Further, the evolutionary dynamics at

exposed locations are typically more dependent on the residues occupying other positions

in the protein (i.e., the background protein sequence) (Youssef et al., 2020). The collective

effect is that rates at buried sites tend to be lower and more robust to different background

sequences as compared to the rates at exposed positions.

Proteins are marginally stable, teetering on the verge of unfolding (Taverna and Gold-

stein, 2002; Williams et al., 2006b; Goldstein, 2011). Therefore, destabilizing substitutions

are usually purged by purifying selection. Nevertheless, there are instances where their

fixation is inevitable. They may become fixed in a population due to random genetic drift,

or a destabilizing residue might be essential for protein function—functional residues

often compromise stability, resulting in a trade-off between functionality and stability

(Tokuriki et al., 2008; Miller, 2017). It is therefore valuable to understand the response to

destabilizations across and within protein structures. Furthermore, a deeper understanding

of the response to destabilization can help inform drug design and therapeutic interven-

tions. For example, the mode of inhibition for six anti-viral drugs is through binding and

destabilization of the Ebola virus spike protein (Ren et al., 2018). The destabilization leads

to premature uncoupling of the two spike subunits, preventing viral entry into host cells.
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However, viruses evolve rapidly and are notorious for their ability to escape drug inter-

ventions. Therefore, characterizing the evolutionary response to destabilizations is crucial

for treating viral infections where evolution is rapid and resistance to drugs is common.

Do protein structures, or positions within a protein, respond differently to destabilizing

substitutions? Is the ability to restore stability facilitated by some structural properties?

Are destabilizations at some sites more challenging to compensate for? Addressing these

questions is the central objective of this chapter, leading to important insights into protein

evolution and the response dynamics that transpire after a destabilizing substitution.

To investigate how proteins and sites within proteins respond to destabilizations, I

simulated protein evolution using a stability-informed model. In recent years, advances in

biophysical models of protein evolution, in particular with selection for protein stability,

have provided insights into evolutionary dynamics that are otherwise unobservable in

natural proteins (Wylie and Shakhnovich, 2011; Pollock et al., 2012; Shah et al., 2015;

Goldstein and Pollock, 2016; Echave, 2019; Youssef et al., 2020). These models are

grounded in the formalisms of both thermodynamics and population genetics theory. Pre-

dictions from stability-informed models often recapitulate trends present in empirical

data, with regards to stability values (Goldstein, 2011), magnitude of stability effects of

mutations (Shah et al., 2015; Wylie and Shakhnovich, 2011), substitutions rates (Youssef

et al., 2020), and levels and trends in convergence rates (Goldstein et al., 2015). Further,

such models intrinsically account for structural constraints and reproduce correlations

between structural descriptors (e.g., relative solvent accessibility, RSA, and weighted con-

tact number; WCN ) and evolutionary rates, even in the absence of functional constraints

(Youssef et al., 2020).

After ensuring that the evolutionary process was at mutation-drift-selection equi-

librium, I introduced and held constant a destabilizing substitution. Then, I tracked

subsequent evolution. In particular, I investigated differences in recovery times, measured

as the number of substitutions after a destabilization until protein stability returns to, or

exceeds, the equilibrium stability values. Recovery times varied across protein structures

and among sites within the same protein. Protein properties that are known to correlate

with evolutionary rates were also significantly associated with recovery times. At the

protein level, differences in recovery times were generally explained by contact density,
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with other structural features having little influence on recovery times. On a site level, vari-

ability in recovery times depended considerably on location in the tertiary protein structure:

destabilizations at buried sites required on average significantly longer for recovery than

destabilizations at exposed positions.

5.3 Results

The space of possible amino acid sequences is vast. Most sequences do not produce stable

proteins for a given structure. The algorithm from Youssef et al. (2020) (Chapter 1 in this

thesis) was used to obtain 50 unique sequences that are stable in a given protein structure

(figure 5.1A). Each sequence was evolved for 200 substitutions to ensure the process was

at mutation-drift-selection equilibrium. Following this equilibration phase, the sequences

were evolved for 300 additional substitutions while keeping a record of site-specific fitness

landscapes at all sites and given all background sequences. The purpose of this phase

(hereafter, called pre-intervention) was to (i) characterize the dynamics and properties of

sequences at equilibrium; and (ii) characterize the distribution of fitness effects at each

site, including which state is the most destabilizing. The simulations are computationally

expensive since each sequence must be thread through the set of alternative structures (see

section 1.3.2 for details). Therefore, an intervention was not introduced at all sites. Instead,

a subset of target sites was selected a priori (approximately 50 per protein) by ordering

sites based on weighted contact number and sampling at uniform intervals (see Methods

for details). At each target site, an intervention was introduced by individually fixing the

most destabilizing mutation. Lastly, during the recovery phase, the destabilized sequences

were evolved for 30 further substitutions with the constraint that no changes can occur

at the target site. This constraint was enforced to prevent reversions and to allow for an

assessment of the dynamics of compensatory substitutions.

For each simulation, recovery time was calculated as the number of substitutions post-

intervention that occurred prior to restoring, or exceeding, the mean stability value in the

pre-intervention phase. For example, consider the stability trajectories at two intervention

sites 51 and 23 in the 2ppn protein (figure 5.1B). After the intervention at site 51, seven

substitutions at other sites were fixed prior to the protein returning to its equilibrium

stability value. In contrast, the destabilization at site 23 was adjusted for (i.e., equilibrium

stability was restored) after 29 substitutions at other positions.
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Figure 5.1: Methods outline. For each protein structure, 50 unique sequences with
fitness greater than 0.99 were obtained. During the equilibration phase, each sequence
was evolved for 200 substitutions to ensure mutation-drift-selection equilibrium was
reached. Then, the sequences were evolved for 300 subsequent substitutions during the
pre-intervention phase. To investigate the response to destabilizing substitutions, an
intervention was introduced at a set of target sites (approximately 50 sites in each protein).
The intervention constituted the fixation of the most destabilizing mutation at the site,
with the constraint that subsequent substitutions cannot occur at the target site. During
the recovery phase, the proteins adjusted to the destabilization through compensatory
substitutions at other positions in the protein. (B) Example stability trajectories from a
simulation of the 2ppn protein. Plotted are trajectories following interventions at sites 51
(blue) and 23 (red). The horizontal dotted line represented the average stability value in
the pre-intervention phase. The vertical dotted lines represent recovery times. Recovery
time was calculated as the number of substitutions that occurred post-intervention prior to
the sequence returning to, or exceeding, the average stability value in the pre-intervention
phase.

5.3.1 Structural classification of proteins

The method outlined above was applied to six protein structures (PDB codes: 1qhw, 2ppn,

1pek, 5jq3, 6vxx, 6nb6). The structures used here inevitably represent a minute fraction

of all possible protein structures. The computational cost associated with the simulations

prohibits its replication across a large number of protein structures. Nevertheless, the
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selected proteins differed in length, function, and structural features representing a diverse

range of structures (table 5.1). The 2ppn protein was the smallest, with only 107 amino acid

sites. In contrast, the longest protein (6nb6) was composed of 1052 amino acid sites. Three

of the selected structures were of globular proteins (2ppn, 1pek, and 1qhw). The remaining

three were spike proteins (5jq3, 6nb6, and 6vxx), having globular and transmembrane

domains. The advantage of the selected protein structures is that (i) they cover a wide

range of protein lengths, (ii) simulations of the globular protein can be directly compared

to previous studies (e.g., Pollock et al. (2012), and the simulations in chapter 3), and

(iii) they expand the set of protein structures for which this stability-informed modelling

framework has been applied.

For each protein, sites were classified into four secondary structure classes (helix,

sheet, turn, and coil) using the DSSP software (Kabsch and Sander, 1983). Sites were

also classified based on their location in the tertiary protein structure: buried sites were

those with relative solvent accessibility (RSA) ≤ 0.05; exposed positions were those

with RSA > 0.05. The percentages of sites within each secondary and tertiary structure

category are summarized in table 5.1. Furthermore, for each protein, contact density was

calculated as the average number of contacts per site. The 1pek and 1qhw protein were the

most densely packed, having the highest contact densities and percentage of buried sites.

Table 5.1: Structural classification of proteins.

Protein Function Organism Len Contact
density %Buried

Secondary Structure
(% sites)

Helix Sheet Turn Coil
2ppn isomerase Human 107 6.90 21.5 10.3 38.3 25.2 26.2
1pek proteinase Fungus 279 8.39 43.0 24.0 21.5 27.2 27.2
1qhw phosphatase Rat 300 7.51 41.0 19.0 24.3 24.3 32.3
5jq3 spike Ebola virus 384 6.32 21.1 16.4 27.6 21.4 34.6
6vxx spike SARS-COV2 972 6.76 29.9 19.4 33.2 20.0 27.4
6nb6 spike SARS-COV 1052 6.59 18.1 18.4 33.8 19.4 28.3

Given the differences in structural features among the proteins, I was interested

in assessing if the equilibrium properties of these proteins differ. For a given protein,

stability values remained relatively constant during the pre-intervention phase, indicative

of mutation-drift-selection equilibrium. The average stability value was -3.43 kcal/mol for

the 2ppn protein; -3.71 kcal/mol for 1pek; -3.63 kcal/mol for 1qhw; -3.27 kcal/mol for

5jq3; -3.34 kcal/mol for 6vxx; and -3.32 kcal/mol for 6nb6 (figure 5.2A). The distribution

of stability effects of all possible single-step mutations (ΔΔG) was similar across protein
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structures (figure 5.2B). As expected, the vast majority of mutations were destabilizing.

The average ΔΔG for all mutations ranged from 2.21 kcal/mol, for the 2ppn protein, to

2.53 kcal/mol, for the 6nb6 protein. Nevertheless, the distributions of fixed mutations

(i.e., substitutions) were centred around zero for all proteins with a balance in the number

of stabilizing and destabilizing substitutions (figure 5.2C). Such a balance is expected at

mutation-drift-selection equilibrium (Goldstein, 2011; Jones et al., 2017).

Figure 5.2: Distributions of equilibrium properties from simulations of six protein struc-
tures. Each row corresponds to a different protein (2ppn, 1pek, 1qhw, 5jq3, 6vxx, 6nb6).
Proteins are ordered with respect to length. (A) Distributions of stability values of all
sequences observed in the pre-intervention phase. (B) Distributions of all single-step
mutations during the pre-intervention phase. Distributions were truncated such that ΔΔG
< 10kcal/mol is set equal to 10 kcal/mol. (C) Distributions of all accepted substitutions
during the pre-intervention phase. Results are based on 50 protein-specific simulations,
each run for 300 substitutions.

5.3.2 Differences in mean recovery time across proteins

To investigate differences in recovery dynamics across the protein structures, I estimated

the mean recovery time for a protein as the average across all intervention sites. Figure

5.3A reports the relationship between structural features (protein length, contact density,

% buried, % helix, % sheet, % coil, and % turn sites) and average recovery times. Of

the structural descriptors, only contact density and the percentage of buried sites were

significantly associated with mean recovery times. The Pearson correlation between
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contact density and mean recovery time was -0.97 (p-value < 0.001, figure 5.3B). The

correlation between the percentage of buried sites and mean recovery time was -0.93

(p-value = 0.001, figure 5.3C). Contact density and the fraction of buried sites are both

measures of the packing density of a protein; they were significantly correlated with each

other (Pearson correlation 0.88, p-value = 0.019, figure 5.3D).

While the protein-level analyses presented here are based on only six protein struc-

tures, interventions were introduced at approximately 50 target sites per protein. These

simulations, therefore, allow for a much more granular exploration of the recovery dynam-

ics between sites within proteins.
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% buried 0.01 0.51 0.02 -- 0.68 -0.78 0.64 -0.02

% helix 0.19 0.58 0.20 0.14 -- -0.77 0.09 0.04

% sheet 0.07 0.58 0.15 0.06 0.07 -- -0.45 -0.45

% turn 0.06 0.03 0.05 0.17 0.86 0.38 -- -0.21

% coil 0.84 0.78 0.56 0.98 0.94 0.38 0.69 --

Figure 5.3: Relationship between mean time to recovery and structural features. (A) The
upper triangle (shown in yellow) reports the Pearson correlation coefficients between
protein properties and mean recovery times. The lower triangle (shown in blue) reports the
corresponding p-values. Significant correlations (p-values ≤ 0.05) are bolded. (B) The
relationship between mean recovery time and contact density. (C) The relationship between
mean recovery time and percentage of buried sites. Plotted are the across-site average
recovery times with bars representing the 95% confidence interval. (D) The relationship
between contact density and percentage of buried sites.

5.3.3 Differences in mean recovery time across sites

The above results suggest that protein structure can influence the time to recovery following

destabilizing substitutions. Nevertheless, an important question remains: Does response
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to intervention differ depending on the location of the destabilization within the protein?

There were 54 target sites for the 2ppn protein; 47 for 1pek; 50 for 1qhw; 48 for 5jq3; 49

for 6vxx; and 53 for 6nb6 (see section 5.5.3 for details and a list of target sites). At each

target site, an intervention was introduced by fixing the most destabilizing substitutions

(prohibiting further change at the site). This process was repeated across 50 different

background sequences per protein for a total of (54×50 =) 2700 simulations of the 2ppn

protein; 2350 simulations for 1pek; 2500 simulations for 1qhw; 2400 simulations for 5jq3;

2450 simulations for 6vxx; and 2650 simulations for 6nb6.

Response to destabilizations differed across sites (figure 5.4). For example, in the

2ppn protein, recovery times were longer for interventions at site 58 than at site 41 (mean

recovery time was 26.1 substitutions for site 58 and 11.9 substitutions for site 41; figure

5.4A). To assess the dynamics across sites more rigorously, an intervention was performed

at all 107 sites in the 2ppn protein and repeated across 50 different background sequences.

Figure 5.4B shows the mean recovery times mapped onto the 2ppn protein structure.

Qualitative assessment reveals that sites towards the core of the protein have higher

recovery times than exposed sites. Furthermore, destabilizations at β-sheet sites appear

to have longer recovery times than destabilizations at other secondary structures. For

the 2ppn protein, mean recovery times ranged from approximately 12 to 26 substitutions

(figure 5.4C). Similar levels of among site variability in recovery times were observed

across the protein structures (figure 5.4C).

What explains these differences in response times? Site-specific structural properties

have well-documented impacts on various evolutionary properties. For example, protein

mutagenesis experiments reveal that β strands (i.e., sheet sites) are on average less muta-

tionally tolerant than α helices (i.e., helix sites); and that turn sites are the most tolerant to

mutations (Guo et al., 2004). As a consequence, turn sites tend to have higher replacement

rates than sheet sites (Goldman et al., 1998). In addition, exposure to solvent (buried

versus exposed sites) tends to have a significant impact on the evolutionary rates at sites;

exposed sites are often more tolerant of mutations and have higher substitution rates than

buried sites (Shahmoradi et al., 2014; Yeh et al., 2014; Echave et al., 2015; Marcos and

Echave, 2015). I, therefore, hypothesized that differences in structural features among

sites may impact the ability of the protein to adjust to the destabilization.

123



Figure 5.4: Variability in mean recovery times across sites. (A) Average stability trajecto-
ries across sites in the 2ppn protein. Each site is represented by a line and stability values
are averaged over fifty different background sequences. Sites 41 and 58 are highlighted
in blue and red, respectively. Site 58 required, on average, the longest to recover while
site 41 had the quickest recovery time. (B) Mean recovery times mapped onto the 2ppn
protein structure. (C) Distributions of site-specific mean recovery times across all protein
structures. Vertical lines represent the first, second, and third quantiles. Figure was made
using R packages ggridges (Wilke, 2020) and ggplot2 (Wickham, 2016).

To assess the impact of secondary and tertiary structural features on response dynam-

ics, I compared the distributions of mean recovery times for sites belonging to different

secondary structure classes (helix, sheet, turn, or coil; figure 5.5A). A one-way ANOVA test

revealed that there was a statistically significant difference in recovery times between site

classes in the 2ppn (p-value < 0.001), 1pek (p-value < 0.001), 1qhw (p-value < 0.001),

and the 5jq3 (p-value = 0.011) proteins. The differences in recovery times between site

classes in the 6nb6 and 6vxx proteins were not significant (p-values were 0.332 and 0.073,

respectively). Tukey post-hoc analyses revealed that mean recovery times were signifi-

cantly higher at sheet compared to turn sites in the 2ppn (p-value = 0.001), 1pek (p-value

= 0.001), 1qhw (p-value = 0.004), and 5jq3 (p-values = 0.050) proteins. Furthermore,
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differences in recovery times were significant between sheet and coil sites in the 2ppn

(p-value = 0.025) and 5jq3 (p-value = 0.015) proteins; and between helix and turn sites in

the 1pek protein (p-value = 0.020). In summary, secondary structure had some effect on

mean recovery times. The largest discrepancy was observed between destabilizations at

sheet and turn sites: interventions at sheet sites required the longest recovery times, while

destabilizations at turn sites tended to recover more quickly.

Figure 5.5: Distributions of mean recovery times for different site types. (A) Sites are
categorized based on secondary structure (coil, sheet, turn, or helix). The average recovery
times were significantly different across secondary structure classifications for the 2ppn,
1pek, 1qhw, and 5jq3 proteins (one-way ANOVA, p-values ≤ 0.05). Differences were not
significant for the 6vxx and 6nb6 (p-values were 0.07 and 0.33, respectively). Post-hoc
analyses revealed that mean recovery times were significantly different between turn and
sheet sites in the 2ppn, 1pek, 1qhw, and 5jq3 proteins (Tukey HSD, p-values < 0.05).
Coil and sheet sites had significantly different mean recovery times in the 2ppn, and 5jq3
proteins (Tukey HSD, p-values ≤ 0.025). Helix and turn sites had significantly different
mean recovery times in the 1pek protein (Tukey HSD, p-value = 0.02)(B) Buried sites
recovered significantly slower than exposed sites across all protein structures (Welch’s
t-test, all p-values ≤ 0.05).

In addition to secondary structure, the association between the location of a site in the

tertiary structure and its evolutionary rates is often significant (Shahmoradi et al., 2014; Yeh

et al., 2014; Echave et al., 2015; Marcos and Echave, 2015). Relative solvent accessibility

(RSA) and weighted contact number (WCN ) are two commonly used measures for

determining a site’s location in the tertiary protein structure. The weighted contact number

can be measured in two ways: with respect to the Cα of the amino acid (WCNα); or with

respect to the geometric centre of the side chain (WCNsc). The latter measure is a better
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predictor of rate variation among sites (Marcos and Echave, 2015). I, therefore, report on

the results based on WCNsc although similar conclusions are expected for WCNα.

Destabilizations at exposed sites were more rapidly compensated (through adjustments

at other sites) than interventions at buried sites (figure 5.5B; Welch’s t-test, p-value <

0.05 for all proteins). Buried and exposed sites are often classified based on an RSA

cut-off: buried sites having RSA ≤ 0.05; exposed sites having RSA > 0.05. Based on

this site 58 (RSA = 0.03) in the 2ppn protein was classified as a buried site. However,

it was less densely packed than other buried sites, with a relatively low WCNsc equal to

0.89. As such, site 58 was an outlier having the lowest mean recovery time among the

buried sites in the 2ppn protein (figure 5.5B). To avoid classifications based on arbitrary

cut-offs, I looked at the association between location in the tertiary structure more closely

by correlating mean recovery times with RSA (figure 5.6A) and WCNsc (figure 5.6B).

Mean recovery times were significantly associated with both structural descriptors; a

significant negative relationship was observed between RSA and mean recovery times

across all protein structures (Pearson correlations < −0.474, all p-values ≤ 0.001, figure

5.6C); while a significant positive relationship was present between WCNsc and mean

recovery times (Pearson correlations > 0.447, all p-values ≤ 0.001).
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2ppn 1pek 1qhw 5jq3 6vxx 6nb6

RSA vs mean time to recovery -0.822 -0.720 -0.775 -0.728 -0.474 -0.512

WCNsc vs mean time to recovery 0.774 0.847 0.802 0.590 0.457 0.447

All p-values 0.001

Figure 5.6: Relationship between mean recovery times and a site’s location in the pro-
tein measured by relative solvent accessibility (RSA; A) and weighted contact number
(WCNsc; B). (C) Pearson correlation coefficients for the different protein structures. All
p-values were ≤ 0.001.

To assess whether both RSA and WCNsc had significant and independent impacts

on recovery times, I performed a multiple linear regression to predict mean recovery times

based on RSA, WCNsc, and protein (table 5.2). These variables explained approximately

60% of the variance in recovery times. Importantly, the results demonstrate that both RSA

and WCNsc were significant predictors of mean recovery times.

Table 5.2: Multiple regression of mean recovery time on RSA (Å2), WCNsc (Å−2) and
protein.

coef std err p-value
Intercept 12.3 1.08 < 0.001
Protein-1qhw 1.78 0.46 < 0.001
Protein-2ppn 6.06 0.55 < 0.001
Protein-5jq3 6.05 0.47 < 0.001
Protein-6nb6 4.86 0.45 < 0.001
Protein-6vxx 4.14 0.46 < 0.001
RSA -6.45 0.85 < 0.001
WCNsc 3.26 0.81 < 0.001
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5.3.4 Why buried sites take longer to recover than exposed sites

What explains the longer recovery times at buried sites compared to exposed sites? I hy-

pothesize that there are at least three contributors to this observation: (i) landscape entropy,

(ii) differences in evolutionary rates, and (iii) epistatic sensitivity. The consequence of

each is described in detail below.

Exposed sites are often more tolerant of mutations than buried sites such that a higher

number of residues may occupy the site with little to no fitness effects (Youssef et al.,

2020; Nisthal et al., 2019). Therefore, exposed positions will tend to have more uniform

site-specific fitness landscapes than buried sites and, on average, have higher substitution

rates. To investigate if these observations are recapitulated within the simulation framework

presented here, the uniformity of a landscape was calculated as the Shannon entropy at

each site and given all background sequences as:

Hh(S) = −
∑
a

fh
a (S) ln f

h
a (S) (5.1)

where fh
a (S) is the fitness of the sequence carrying amino acid a at site h in the context of

the background sequence S. The entropy of a uniform landscape will be ≈ 3. Alternatively,

if only a single amino acid is permissible at a site h, then Hh will be equal to zero.

Consistent with previous observations, landscapes at exposed positions were significantly

more tolerant of mutations (i.e., have more uniform fitness landscapes) as compared to

buried sites (figure 5.7A, Welch’s t-test all p-values < 0.001).

Since buried sites have less uniform fitness landscapes, the destabilizing substitutions

fixed during the intervention tended to have more substantial fitness effects than at exposed

sites. The stability effect of a mutation was significantly correlated with recovery times

(Pearson correlation > 0.429, all p-values < 0.001). As an example, consider the fitness

landscapes at buried site 85 (figure 5.9A) and exposed site 121 (figure 5.9B) of the 1qhw

protein across different background sequences. Site 85 was the most densely packed target

site (WCNsc = 1.55) and site 121 was the least packed (WCNsc = 0.42). The landscapes

at buried site 85 are much less uniform than the landscapes at site 121. At the time of

interventions (number of substitutions = 300), the most destabilizing amino acid (leucine,

one-letter code L) was fixed at site 85 (figure 5.9A). The stability effect of the K to L

substitution was highly destabilizing with a ΔΔG = 7.33 kcal/mol, leading to a protein
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with fitness equal to 0.001. In contrast, at site 121 the most destabilizing mutation (to

phenylalanine, one-letter code F) resulted in a comparatively minor destabilization, ΔΔG

= 2.32 kcal/mol with fitness equal to 0.84.

Figure 5.7: Differences in evolutionary dynamics between buried and exposed sites; surface
sites are more mutationally tolerant and evolve quicker than buried sites. (A) Distributions
of average landscape entropy (avg H) at a site, averaged over all background sequences
observed in the pre-intervention phase. (B) Distributions of expected substitution rates
(dN/dS). All p-values were < 0.001, Welch’s t-test. Plotted results are from six protein
structures (PDB code: 2ppn, 1pek, 1qhw, 5jq3, 6vxx, and 6nb6). Protein lengths are
provided in parentheses below the PDB code.

All else being equal (i.e., constant effective population size, environment, and muta-

tion rates), the fitness landscape at a site dictates its rate of substitution. Therefore, the

observation that landscapes at exposed sites are more uniform than at buried sites suggests

that they would have higher substitution rates. To illustrate this, consider, again, the fitness

landscapes at buried site 85 and exposed site 121 (figure 5.9A and 5.9B). The relatively

uniform fitness landscapes at site 121 indicate that stability effects of mutations will be

less severe. As such, the rate of fixation of nonsynonymous mutations will be relatively

high. Alternatively, at buried site 85, amino acid K is selectively preferred over all other

residues. Since most nonsynonymous mutations will decrease fitness, the substitution rate

at the site will be low, reflective of purifying selection.

To explore the relationship between recovery times and substitution rates, I estimated

the evolutionary rate at a site by calculating the expected nonsynonymous to synonymous

substitution rate ratio (dN/dS; see Methods for details). In line with empirical obser-

vations, buried sites had significantly lower evolutionary rates than exposed sites in all

proteins (Yeh et al., 2014; Shahmoradi et al., 2014; Marcos and Echave, 2015) (figure
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5.7B). However, the effect sizes, and strength of the correlation, tended to decrease as

protein length increased. Furthermore, I observed a significant association between mean

recovery times and site-specific substitution rates: the Pearson correlation coefficients were

−0.923,−0.861,−0.887,−0.805,−0.688, and −0.688 for the 2ppn, 1pek, 1qhw, 5jq3,

6vxx, and 6nb6 proteins respectively (all p-values < 0.001; figure 5.8).

Figure 5.8: Relationship between mean recovery times and substitution rates (dN/dS)
across six protein structures (2ppn, 1pek, 1qhw, 5jq3, 6vxx, 6nb6).

Substitution rates at exposed sites tend to be more variable than rates at buried sites

(Youssef et al., 2020). Since site-specific fitness landscapes underlie substitution rates,

this observation suggests that landscapes at exposed sites are more variable depending on

the background protein sequence than the landscapes of buried sites. As a proxy for the

variability in the fitness landscapes at a site, I measured the number of unique amino acids

that produced the fittest protein. For example, lysine (one-letter code K) was the most

preferred amino acid at site 85 regardless of the background sequence (figure 5.9B). In

contrast, the fittest amino acid at site 121 varied depending on the background sequence

(figure 5.9C). A similar trend was observed across all buried and exposed sites: the fittest

amino acid at buried sites is less dependent on the background sequence compared to

exposed sites (figure 5.9D).
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Figure 5.9: Higher variability in fittest amino acids at exposed sites. Fitness landscapes
at buried site 85 (A) and exposed site 121 (B) of the 1qhw protein given the background
sequences observed at the start of the pre-intervention phase, and after 10, 100, and 300
substitutions. (C) Logo plots representing the variability in the most preferred residue
across background sequences at exposed site 121 and buried site 85 of the 1qhw structure.
The letter size is proportional to the number of background sequences where the respective
amino acid was the fittest. (D) The number of unique amino acids that were most preferred
at a site was significantly higher at exposed than buried sites.

5.4 Discussion

The work presented in this chapter highlights the association between protein structure

and recovery dynamics. Across various protein-level structural features, contact density

had the strongest effect on recovery times: more densely packed proteins tended to recover

more quickly to destabilizations than loosely packed proteins. An important caveat to

this analysis is that the simulations were based on only six protein structures, limiting
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the ability to derive general conclusions regarding the influence of protein structure on

recovery dynamics. Nevertheless, the observation that more densely packed proteins

recover more quickly follows from previous conclusions based on the relationship between

contact density and evolutionary rates (Bloom et al., 2006; Zhou et al., 2008). Structures

with higher contact densities are more designable (i.e., a greater number of amino acid

sequences can fold stably into the given structure)(Wolynes, 1996; Shakhnovich, 1998).

The observation that more densely packed structures (e.g., 1pek and 1qhw) were able to

recover stability after a comparatively smaller number of compensatory substitutions (i.e.,

have shorter recovery times) than less packed structures (6nb6 and 5jq3) follows from

previous claims that more sequences can fold into densely packed structures (Wolynes,

1996; Shakhnovich, 1998; England and Shakhnovich, 2003; Bloom et al., 2006).

The simulations presented here allow for a more rigorous investigation of the dynamics

of recovery across sites within a protein. Destabilizations at exposed sites were more easily

compensated for than destabilizations at buried sites. Three underlying phenomena explain

this observation. First, exposed sites tended to have more uniform fitness landscapes

(Youssef et al., 2020; Nisthal et al., 2019), a pattern that is recapitulated in the stability-

informed simulations. A consequence of this is that interventions constituted less severe

destabilizations at exposed compared to buried sites. As such, fewer adjustments were

required in order to restore stability.

Second, it has previously been observed that buried sites tend to be less sensitive to

epistasis (Youssef et al., 2020), where epistatic sensitivity was measured as the variability

in the site-specific dN/dS rate across different background sequences. Rates at buried

sites were less variable given different background sequences compared to the rates at

exposed positions. Within the stability-informed framework presented here, (with fixed

effective population size, environment, and mutation rates) variations in dN/dS rates are a

direct consequence of varying site-specific fitness landscapes. Therefore, that exposed sites

have higher variability in dN/dS suggests that fitness landscapes at exposed sites may be

more influenced by the background sequence than landscapes at buried sites. Indeed, I

observed that the number of unique amino acids that produced the protein with the highest

fitness was more variable (i.e., more dependent on the background protein sequence) at

exposed sites compared to buried sites. This is perhaps expected since buried sites have a

higher number of interactions. Therefore, the fitness landscapes at a buried site must be
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compatible with the residues present at the many neighbouring sites. In contrast, exposed

sites have fewer contacts, and a substitution at one of the few interacting sites might more

easily dictate the fitness landscape.

Lastly, exposed sites tend to have higher substitution rates than buried sites (Shah-

moradi et al., 2014; Yeh et al., 2014; Echave et al., 2015; Marcos and Echave, 2015). This

observation is also recapitulated within the modelling framework. However, it is not di-

rectly apparent why evolutionary rate should influence recovery time since the substitution

process was constrained to prevent further substitutions at the intervention site. In other

words, recovering stability does not directly depend on the evolutionary rate at the target

site. The association between recovery times and evolutionary rates can be understood

through the dynamics at neighbouring sites. Exposed (or buried) sites tend to neighbour

other exposed (or buried) sites, which also have more uniform (or peaky) landscapes and

evolve quickly (or slowly). Therefore, a destabilizing intervention at a buried site requires

longer for the protein to recover stability since the sites neighbouring the intervention site

are less likely to substitute away from the current resident amino acids.

By looking across both protein-level (e.g., contact density and the fraction of buried

sites) and site-level (e.g., buried and exposed sites) structural descriptors an interesting

phenomenon emerges: structural features that influence evolutionary rates also impact

recovery times. More specifically, features that correlate positively (or negatively) with

mean recovery times have an inverse relationship with evolutionary rates. More densely-

packed proteins tend to evolve at higher substitution rates, and tend to have shorter recovery

times than less densely packed proteins. Turn sites are more mutationally tolerant and

have higher evolutionary rates than sheet sites (Guo et al., 2004; Goldman et al., 1998).

In line with this observation, I found that destabilizations at turn sites were more quickly

adjusted for than destabilizations at sheet sites. Furthermore, destabilization at buried

sites (which tend to have lower substitution rates) required more adjustments at other

positions than destabilizations at exposed sites in order to recoup equilibrium stability

values. Therefore, there appears to be a general relationship between evolutionary rates

and recovery dynamics both across and within proteins.

Protein evolution is a stochastic process. Destabilizing substitutions may be fixed

in populations by random genetic drift, as a result of a trade-off between stability and

functionality (Tokuriki et al., 2008; Miller, 2017), or as a consequence of targeted drug
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interventions (Ren et al., 2018). Therefore, characterizing general associations of response

to destabilization with phenotypic features such as protein structure is essential to under-

standing the process of sequence evolution both within and across proteins. Overall, the

findings presented here suggest that the structures of proteins and sites within a protein

may differ substantially in their recovery dynamics.

5.5 Methods

5.5.1 Model of sequence evolution

To examine the relationship between recovery time and structural features, I simulated

sequence evolution using six protein structures (PDB codes: 2ppn, 1pek, 1qhw, 5jq3, 6vxx,

and 6nb6). I modelled the evolutionary process as a continuous-time Markov chain with

site-specific fitness landscapes according to the MutSel model (Halpern and Bruno, 1998)

with fitness values determined from the stability-informed framework. See sections 1.3.1

and 1.3.2 for details regarding the MutSel and stability-informed models.

I assumed a fixed effective population size with Ne = 100, equal nucleotide frequen-

cies (πA = πC = πT = πG = 1/4) and a transition-transversion rate κ = 2. Given each

protein structure, 50 simulations were performed starting at different initial sequences.

The simulations were run for 500 substitutions. To ensure that the process has reached

mutation-drift-selection equilibrium, I report on results after an initial equilibration phase

of 200 substitutions.

5.5.2 Secondary structure (helix, sheet, coil, turn), relative solvent
accessibility (RSA), and weighted contact number (WCN )

Site-specific structural properties were estimated following the protocol in Sydykova et al.

(2018). The xssp web server (https://www3.cmbi.umcn.nl/xssp/) was used to estimate

secondary structure and to calculate the solvent accessible surface area (ASA) for each

site. Following Bloom et al. (2006), sites were grouped into four secondary structure types

based on their DSSP class (Kabsch and Sander, 1983): helix (class H), sheet (class E),

turn (class S and T), and coil (class B, G, I). Relative solvent accessibility (RSA) was

calculated as

RSA = ASA/maxASA (5.2)

where maxASA is the maximum accessible surface area as measured by Tien et al. (2013).
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A site’s weighted contact number was calculated as:

WCNx =
∑
j �=i

1

d2xi,xj

(5.3)

The distance d2xixj
can be calculated as either the distance between the Cα for sites i and

j (then x = α), or as the distance between the geometric center of the side-chain (then

x = sc). Weighted contact number based on side-chain contact density was a better

predictor of rate variation among sites (Marcos and Echave, 2015). Therefore, the results

presented here are based on WCNsc. The results remained consistent when WCNα was

used.

5.5.3 Identifying target sites

The simulation procedure outlined above is computationally expensive, limiting the ability

to evaluate the recovery dynamics at all sites. Instead, a subset of sites was selected a

priori by ordering sites based on WCNsc and sampling at fixed intervals for a total of

approximately 50 target sites per protein. Note that the sampling interval depends on

protein length. For example, for the 2ppn protein (length = 107) a site was sampled every

2nd interval for a total of 54 sites. Whereas, for the 6nb6 protein (length = 1052) a site

was sampled every 20th interval for a total of 53 sites. The target sites for each protein are

provided in table 5.3. After the intervention, the sequences were evolved for 30 further

substitutions. Then, recovery time was calculated as the number of substitutions after

the intervention that occurred before the sequence returned to, or exceeded, the mean

pre-intervention stability value.
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Table 5.3: Target sites selected for intervention. Sites were ordered based on WCNsc and
sampled at uniform intervals. The intervals were determined such that approximately 50
target sites were obtained per protein.

Protein
(length)

Sampling
interval

Total
# of sites Site number

2ppn
(107aa)

2nd 54

0, 3, 4, 6, 7, 8, 9, 12, 13, 14, 20, 21, 22, 23,
24, 25, 28, 30, 33, 35, 36, 37, 38, 40, 41, 48,
51, 52, 54, 55, 56, 57, 58, 59, 62, 64, 70, 71,
74, 75, 78, 82, 85, 87, 88, 91, 93, 95, 97, 99,
100, 102, 103, 106

1pek
(279aa)

6th 47

2, 3, 8, 16, 17, 24, 32, 38, 44, 62, 66, 68, 74,
92, 94, 102, 103, 106, 107, 111, 114, 128,
137, 142, 143, 147, 155, 158, 162, 165, 166,
182, 186, 195, 199, 202, 213, 214, 224, 226,
232, 242, 246, 254, 260, 265, 266

1qhw
(300aa)

6th 50

1, 4, 18, 19, 29, 33, 35, 39, 51, 53, 56, 59, 80,
85, 92, 93, 96, 101, 104, 112, 114, 121, 130,
133, 134, 141, 146, 157, 160, 163, 164, 165,
173, 186, 193, 194, 204, 213, 214, 224, 231,
245, 247, 250, 253, 269, 276, 285, 294, 295

5jq3
(384aa)

8th 48

0, 6, 20, 25, 29, 43, 71, 75, 90, 96, 107, 110,
112, 137, 146, 150, 174, 178, 179, 187, 188,
195, 207, 214, 223, 224, 225, 235, 238, 241,
246, 249, 250, 251, 270, 276, 294, 298, 317,
331, 334, 335, 342, 351, 366, 369, 370, 382

6vxx
(972aa)

20th 49

6, 50, 65, 72, 85, 91, 96, 105, 185, 262, 283,
292, 310, 314, 315, 323, 335, 359, 369, 387,
393, 425, 448, 465, 471, 477, 491, 504, 526,
531, 534, 535, 554, 565, 585, 634, 640, 664,
697, 719, 725, 729, 823, 849, 874, 901, 917,
956, 971

6nb6
(1052aa)

20th 53

2, 5, 27, 29, 31, 36, 65, 102, 118, 130, 134,
155, 158, 178, 228, 236, 296, 298, 336, 353,
420, 433, 439, 444, 480, 489, 492, 529, 543,
559, 580, 590, 609, 619, 622, 680, 703, 716,
720, 774, 782, 787, 812, 828, 830, 831, 884,
886, 914, 948, 997, 1001, 1051

5.5.4 Site-specific dN/dS

To calculate the expected rate at a site we must consider all possible background sequences

since epistatic interactions with other sites can change the site’s rate of evolution. The

substitution rate dN/dS can, in principle, be calculated as the rate of nonsynonymous

substitutions (N ) normalized by the rate of nonsynonymous mutations (Nmut) given all

136



sequences S

dN/dS =

∑
S N∑

S Nmut

(5.4)

where

N =
∑
x

∑
y∈Nx

πxqxy (5.5)

Nh
mut =

∑
x

∑
y∈Nx

πh
xμxy (5.6)

Nx is the set of codons that are nonsynonymous to codon x and differ by a single nucleotide,

qxy is the substitution rate from x to y calculated using equation (1.3), μxy is the mutation

rate calculated based on the HKY85 model, and πx is the stationary frequency for codon x

at site h. However, the space of possible sequences is vast (20L where L is the length of

the protein), prohibiting our ability to get an exact estimate of dN/dS. Instead, equation

(5.4) was summed over all sequences observed in the pre-intervention phase for a given

protein (a total of 300× 50 sequences per protein).
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CHAPTER 6

DISCUSSION

Wind back the tape of life, and let it play again. Would the replay ever yield

anything like the history that we know?

—Stephen Jay Gould. Wonderful Life.

In the decades since Darwin’s Origin, our understanding of the evolutionary process

has grown immensely. Nevertheless, we cannot predict with absolute accuracy which

new variants of proteins will emerge (Agor and Özaltın, 2018) or map out the exact

trajectories in sequence space leading to extant proteins (Sailer and Harms, 2017). These

shortcomings are not because of a superficial understanding of the evolutionary process.

Rather, evolution is stochastic in nature, traversing an immense sequence space, with

varying outcomes expected even under identical start conditions (Gould, 1991). Our

best bet is to embrace a phenomenological approach, characterising emerging patterns

and dynamics, and identifying phenotypic features of proteins that are associated with

particular phenomena.

All models, in biology and elsewhere, make simplifying assumptions. When nature

violates these assumptions, the inferences derived from such models may be biased. It is,

therefore, crucial to understand how violations of model assumptions may be impacting our

evolutionary inference. Throughout this dissertation, I used a stability-informed modelling

framework to constrain the evolutionary process. A central assumption in this framework

is that natural selection is acting solely on protein stability, a gross oversimplification of

the constraints governing protein evolution. Yet, this modelling framework recapitulates

numerous patterns present in natural sequences: (i) the marginal stability of proteins

(Goldstein, 2011); (ii) the levels and patterns of convergence rates (Goldstein et al., 2015);
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(iii) substitution rates (Youssef et al., 2020); (iv) the relationship between a site’s location

in the protein and its evolutionary rate (Youssef et al., 2020); and (v) the distribution

of stability effects of mutations (Goldstein, 2013). For these reasons, I believe that this

modelling framework is appropriate for investigating the questions addressed in this

dissertation, and, more generally, for developing a deeper understanding of the dynamics

of protein evolution.

In addition to reproducing various empirically observed phenomena, the stability-

informed modelling framework has the advantage that it implicitly accounts for epistatic

interactions between sites. It is therefore useful for understanding how epistasis may

influence the evolution of protein sequences. As discussed in Chapter 2, stability-mediated

epistasis resulted in higher rates of substitution than the expected rates had sites evolved

independently, an initially counter-intuitive phenomenon that can be understood by viewing

the fitness landscape dynamics at a site. As substitutions accrue in the protein, the site-

specific fitness landscape will change in response. As such, a site must constantly adjust

for changes in the background protein sequence, resulting in dynamics reminiscent of

adaptive Red-Queen regimes (Van Valen, 1973; Rodrigue and Lartillot, 2017).

In contrast with such a dynamic and interdependent view of the evolutionary process

at a site, widely used inference procedures (e.g., ω-based models and phylogenetic models)

often assume that sites evolve independently. It is all but impossible to forgo this assump-

tion since the combinatorial explosion of accounting for all possible interactions would

make these inference procedures intractable. Some have argued that such limitations may

significantly impair the accuracy of inferred parameters (Pollock et al., 2012). Others

have asserted that temporal nonstationarity (e.g., changes in site-specific fitness landscapes

over time) are relatively minor compared to among-site variability, arguing in support

of the simplifying, albeit unrealistic, assumption of site-independence (Ashenberg et al.,

2013). I have shown in Chapter 2, that, with regards to the inference of substitution

rates, site-independence models underestimated the amount of among-site rate variability.

Nevertheless, they captured the most common rates across sites. As such, the results

presented in Chapter 2, favour the interpretation that while temporal epistatic dynamics

are unequivocal, their magnitudes are comparatively minor.

While epistatic models might not be essential for accurate inference, they are powerful

tools for investigating evolutionary dynamics. They have revealed that proteins can adjust
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for resident amino acids by increasing their propensities over time (Pollock et al., 2012).

This has led some to conclude that the detection of the counter dynamics—decreases in

resident amino acid propensities—provide evidence of adaptive evolution (Stolyarova

et al., 2020; Popova et al., 2019). In Chapter 3, I presented results that challenge this claim,

showing that decreases in propensities can occur in the absence of adaptive evolution.

Furthermore, I have shown that the proportion of sites for which the propensity of the

resident amino acid increases is expected to be equal to the proportion where propensities

decrease under non-adaptive evolution. Under adaptive circumstances (e.g., external

environmental changes), I suspect that the proportion of sites experiencing decreases in

resident amino acid propensities will exceed those for which the propensities increase. As

such, site-specific dynamics may still be useful for revealing instances of adaptive regimes.

This work highlights that characterizing general evolutionary dynamics using plausible

stability-informed models is essential not only for understanding the process of sequence

evolution but also for the accurate detection of molecular adaptations.

What constitutes a molecular adaptation? It is commonly defined as the evolutionary

response that transpires following an environmental or functional change external to the

protein (dos Reis, 2015; Jones et al., 2017). Following the external change, the mapping of

protein sequences to fitness values shifts such that the current protein state is suboptimal

for the new conditions. However, site-specific fitness landscapes are constantly shifting

in response to changes at other positions. In a way, the environment surrounding the

site varies as amino acids change in the background sequence. The site must therefore

evolve in response to that shift in the landscape. Can such site-level epistatic dynamics

be differentiated from protein-level adaptations? In chapter 4, I reviewed theoretical

and experimental work on site-specific shifts in fitness landscapes. The consensus from

these studies is that changes in site-specific fitness landscapes due to epistatic interactions

are often minor in magnitude. Over geological time scales (approximately four billion

years of evolution), the most preferred residue at a site often remains conserved (Risso

et al., 2015). Alternatively, when faced with different environmental conditions, the set of

prefered amino acids often differ drastically (Hietpas et al., 2013). Furthermore, based on

results from Chapter 2, I expect that the balance of sites for which propensities, and hence

substitution rates, increase or decrease will no longer apply when a protein is subjected to

novel environmental conditions. Therefore, while shifts in landscapes can occur due to
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nonadaptive epistasis and adaptive evolution, the dynamics are likely to differ, allowing

them to be distinguishable.

Lastly, as indicated by the strength of the association of structural protein features

with substitution rates, the process of protein evolution—both across proteins and among

sites within a protein—is underpinned by physical constraints. Yet little previous effort

has been devoted to characterizing the impact of protein structure on the evolutionary

response to destabilizing substitutions. The investigation of the relationship between

response to destabilizing substitutions and protein structure presented in Chapter 5 reveals

that both solvent accessibility and secondary structure lead to differences in recovery

times. Destabilizations at buried sites, towards the core of the protein, required more

compensatory substitutions to restore stability compared to destabilizations at surface sites.

Similarly, destabilizations at sites within β-sheets required longer recovery times than

destabilizations at turn sites. Overall, this work underscores the importance of protein

structure in governing response dynamics.

Protein stability is but one of many constraints guiding the evolutionary process.

Nevertheless, in most proteins (intrinsically disordered proteins excepted) it is an essential

constraint that must be satisfied prior to proper biological functions. Taken together, the

results presented in this dissertation highlight that stability requirements place a major

constraint on the evolutionary process. The proteins investigated herein perform various

biological functions (isomerase, protease, kinase, and spike proteins) that undoubtedly

place additional constraints on their sequence evolution. Integrating both structural and

functional constraints, see for example Echave (2019), will lead to improved models and

may reveal further intricacies regarding the process of evolution.
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