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Abstract

Do interactions between residues in a protein (i.e., epistasis) significantly alter evolutionary dynamics? If so, what
consequences might they have on inference from traditional codon substitution models which assume site-
independence for the sake of computational tractability? To investigate the effects of epistasis on substitution rates,
we employed a mechanistic mutation-selection model in conjunction with a fitness framework derived from protein
stability. We refer to this as the stability-informed site-dependent (S-SD) model and developed a new stability-informed
site-independent (S-SI) model that captures the average effect of stability constraints on individual sites of a protein.
Comparison of S-SI and S-SD offers a novel and direct method for investigating the consequences of stability-induced
epistasis on protein evolution. We developed S-SI and S-SD models for three natural proteins and showed that they
generate sequences consistent with real alignments. Our analyses revealed that epistasis tends to increase substitution
rates compared with the rates under site-independent evolution. We then assessed the epistatic sensitivity of individual
site and discovered a counterintuitive effect: Highly connected sites were less influenced by epistasis relative to exposed
sites. Lastly, we show that, despite the unrealistic assumptions, traditional models perform comparably well in the
presence and absence of epistasis and provide reasonable summaries of average selection intensities. We conclude that
epistatic models are critical to understanding protein evolutionary dynamics, but epistasis might not be required for
reasonable inference of selection pressure when averaging over time and sites.
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Introduction
Most proteins must fold into a native structure in which they
are moderately stable before they are able to perform their
biological function. Protein stability depends on the sequence
of amino acids and their interactions in the folded three-
dimensional structures. Because of these interactions, evolu-
tionary selective constraints to maintain adequate stability
result in epistatic dependencies between residues.
Specifically, epistasis manifests as a dependency in the fitness
effect of a mutation on the background protein sequence in
which it arose. For example, let f h

a ðSÞ be the fitness of the
protein provided amino acid a is occupying site h in the con-
text of background sequence S. Then, FhðSÞ ¼ hf h

1 ðSÞ; . . . ;
f h
20ðSÞi is the site-specific vector of amino acid fitness values

specifying the fitness landscape at site h. Following a substi-
tution at another position in the protein, so that the back-
ground sequence changes from S to X, the fitness of the same
amino acid will subsequently change, f h

a ðSÞ 6¼ f h
a ðXÞ.

Therefore, in the presence of epistatic dependencies, the fit-
ness landscape at a site is subject to fluctuations as substitu-
tions occur at other sites (fig. 1A). Stability constraints
typically result in global epistasis, meaning that a change in

the incumbent amino acid at one site induces shifts in the
fitness landscapes at many, often all, other sites in the protein
(Starr and Thornton 2016). Although such interdependencies
inevitably occur, the magnitude and frequency of these shifts,
and their impact on protein evolution, remain controversial.

Using extensive computational experiments, Pollock et al.
(2012) found that stability-induced epistasis results in fre-
quent and substantial shifts in amino acid fitness landscapes.
To the contrary, Ashenberg et al. (2013) used computational
and experimental approaches and reported that although
stability-induced fluctuations in site-specific amino acid fit-
ness landscapes do occur, they are relatively minor in magni-
tude and are therefore inconsequential with regards to long-
term evolutionary dynamics. This controversy has spurred
multiple follow-up experiments, finding support for both
claims and little consensus (Risso et al. 2015; Shah et al.
2015; Starr et al. 2018; Ferrada 2019). It remains unclear if
and how stability-induced epistasis influences protein
evolution.

Models used to infer evolutionary parameters from natural
protein alignments commonly assume site-independence
and other simplifying assumptions (e.g., time-stationary sub-
stitution rates, and low levels of among-site rate
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heterogeneity) for the sake of computational tractability. In
this study, we focus on the widely used codon substitution
models which infer selection pressure as x, the normalized
ratio of nonsynonymous substitutions to the ratio of synon-
ymous substitutions (Goldman and Yang 1994; Muse and
Gaut 1994); we refer to these as x-based models. Natural
proteins evolve under complex evolutionary dynamics that
are not entirely captured by traditional x-based models (e.g.,
epistatic interactions between sites). If epistasis between res-
idues in a protein does have a dramatic effect on protein
evolution, then the validity of inference from site-
independence models might be negatively impacted.

Does epistasis substantially influence the rate at which
proteins evolve? And if so, how reliable are inferences from
traditional x-based models which assume that sites evolve
independently? Addressing these questions is our main ob-
jective. To do this, we model the evolutionary process from
first principles of population genetics theory using the
mutation-selection (MutSel) framework (Halpern and
Bruno 1998; Yang and Nielsen 2008). Unlike x-based models,
MutSel models account for differences in amino acids fitness
values and allow for more realistic levels of among-site rate
heterogeneity by assigning each site a unique fitness land-
scape (Fh). MutSel frameworks are commonly used as a

method for simulating plausible evolutionary dynamics
(Rodrigue et al. 2010; Ashenberg et al. 2013; Spielman and
Wilke 2015; Jones et al. 2017, 2018, 2020). These are site-
independent models and therefore do not directly model
the dynamics of epistasis. With appropriate fitnesses, they
can in theory be used to model the marginal effects of stability
and/or other selective pressures on a site. The challenge then
lies in determining plausible site-specific fitness landscapes.

Several ways of calculating amino acid fitness values have
been proposed. For example, Spielman and Wilke (2015) de-
rived amino acid fitness values based on empirical site-specific
frequencies from large alignments of homologous proteins.
Alternatively, Jones et al. (2018) assigned amino acid fitness
values such that the estimated probability density function of
the scaled fitness effects (2Ne½fx � fy� for amino acids x and y
and effective population size Ne) matches the distribution
inferred from empirical data. Hereafter, these approaches
are referred to as site-wise MutSel. Under the site-wise
MutSel formulations, site-specific fitness landscapes average
the selective pressure acting on a site, assuming site-
independent evolution, and therefore time-stationary fitness
landscapes (fig. 1B). Changes in site-specific fitness landscape
are interpreted as a change in selection pressure (due to either
a change in environment or a change in protein function).

FIG. 1. Site-specific fitness landscape dynamics (A, B) and flowchart of method design (C). (A) Epistasis results in a changing site-specific fitness
landscape as substitutions occur at other positions in the protein. (B) Site-independent evolution implies a static (constant) fitness landscape. (C)
Real protein alignments were fitted to M-series models to obtain maximum likelihood estimates of substitution rates (x) and estimates of protein-
specific parameters (phylogeny, j, pA;pC; pG; and pT). The protein-specific parameters were then used to generate 50 alignments under each of
the simulation models: C-SI, S-SI, and S-SD. The validity of the simulation model was assessed by comparing the inferred x rates from the simulated
alignments to the x estimates from the corresponding real protein alignment. To assess the performance of inference models, expected substi-
tution rates, dNh=dSh , were calculated directly from the simulation models and compared with the inferred x values. Diagram modified from
Spielman and Wilke (2015).
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Determining fitness landscapes has also been addressed
mechanistically by combining the MutSel approach with bio-
physical models of protein folding where fitness values de-
pend on protein stability or the proportion of correctly folded
proteins at thermodynamic equilibrium (Pollock et al. 2012;
Ashenberg et al. 2013; Goldstein and Pollock 2016, 2017).
Although comparable at first glance, the biophysical
approaches differ extensively from the site-wise MutSel appli-
cations. Importantly, the biophysical models account for tem-
poral variation in site-specific fitness landscapes that emerges
as a consequence of global stability-induced epistasis (fig. 1A).
Accounting for these temporal dynamics is essential for un-
derstanding how epistasis influences protein evolution.
Although the evolution of natural proteins is certainly shaped
by additional structural and functional constraints, for most
proteins, proper folding into a native structure is prerequisite
to being able to carry out their biological function.

To investigate the influence of epistasis on protein substi-
tution rates, we use the MutSel evolutionary model in con-
junction with a biophysical model of protein folding. We refer
to this as the stability-informed site-dependent (S-SD) model
since stability calculations inherently take into account epi-
static interactions between sites. We develop an analogous
stability-informed site-independent (S-SI) model where pro-
teins evolve under equivalent stability-mediated selection
pressures but having independent and constant fitness land-
scapes (fig. 1B). Specifically, from each S-SD evolutionary sim-
ulation, we calculated the average fitness landscapes at each
site over different background sequences. We then use these
site-specific average landscapes as the unique and constant
landscapes for each site in the S-SI simulations (fig. 2).
Therefore, for each S-SD alignment, we generated an analo-
gous S-SI alignment under the same average selection con-
straints but without the temporal dynamics characteristic of
epistasis. The S-SI versus S-SD model comparison allows for a
novel and direct way of investigating the influence of stability-
induced epistasis on evolutionary dynamics. To permit com-
parison with models that do not account for stability, we
include a third independent and identically distributed across
sites framework where site-specific fitness landscapes are de-
rived from the C-series frequency profiles (Quang et al. 2008);
we refer to this as the C-series site-independent (C-SI) model.

The conditions of our simulations are derived from mul-
tiple sequence alignments for three natural protein-coding
genes with PDB structures 1QHW, 2PPN, and 1PEK. The three
protein structures differ in important ways. The 2PPN protein
folds following a two-state folding process and therefore con-
forms to one of core thermodynamic model assumptions.
The 1QHW structure was used to maintain consistency
with previous studies which used the same structure
(Pollock et al. 2012; Goldstein and Pollock 2016, 2017).
Lastly, the 1PEK protein is comparable in length to the
1QHW protein, however, the 1PEK protein is more densely
packed. We begin by validating the stability-informed models
and show that simulated alignments are phenomenologically
comparable to the real protein alignments based on various
metrics. We then use the S-SI and S-SD models to investigate
the difference in dynamics when sites evolve with epistatic

interactions or independently. We find that epistasis results in
minor elevations in substitution rates over the whole protein.
However, site-wise analysis reveals that the impact of epistatic
interactions on substitution rates can be substantial at indi-
vidual sites. We describe a mechanism whereby epistasis
increases substitution rates compared with the rates under
site-independent evolution. Lastly, we report that although
models that treat site-wise variation in x as a random variable
underestimate the degree of among-site rate heterogeneity,
the estimated x rates tend to accurately identify the most
common substitution rates across sites. Despite their simplic-
ity, x-based inference models preformed comparably well in
the presence and absence of epistasis.

Results

Stability-Informed Models Generate Sequence
Alignments Consistent with Real Data
Evaluating the Relationship between Substitution Rates and

Structural Features
Buried residues, toward the core of the protein, are more
densely packed having higher weighted contact number
(WCN) and lower relative solvent accessibility (RSA)

FIG. 2. Derivation of the stability-informed site-independent (S-SI)
model. First, we generated multiple sequence alignments (MSA) un-
der the epistatic stability-informed site-dependence (S-SD) model
(see Materials and Methods section for details). Then, at each site,
we calculated FhðSÞ ¼ hf h

1 ðSÞ; . . . ; f h
20ðSÞi, the site-specific fitness

vector where f h
a ðSÞ is the fitness of amino acid a at site h given back-

ground sequence S. This was repeated across all extant sequences
S1; . . . ; SN . Next, we calculated �F

h
the average fitness landscape at site

h across background sequences. We generate under S-SI with �F
h

as
the independent and constant fitness landscapes (see Materials and
Methods section for details). N is the number of taxa in the protein-
specific alignment (14, 14, and 12 for proteins 1QHW, 2PPN, and
1PEK), and n is the number of sites in the protein-specific alignment
(300, 107, and 279 for proteins 1QHW, 2PPN, and 1PEK).
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compared with surface residues. Analyses of natural protein
alignments often reveal significant correlations between site-
specific substitution rates and structural properties such as RSA
and WCN: Buried sites tend to be more conserved with lower
substitution rates compared with exposed sites (Shahmoradi
et al. 2014; Yeh et al. 2014; Echave et al. 2015; Marcos and
Echave 2015). We were interested in assessing if any of the
generative models recapitulate this phenomenon. We mea-
sured the expected site-specific substitution rate (dNh=dSh)
directly from the fitness landscapes using equation (4) for C-SI
and S-SI and equation (5) for the S-SD. We refer to dNh=dSh as
the expected substitution rate throughout the study since it
represents the theoretically predicted substitution rate at evo-
lutionary equilibrium (Spielman and Wilke 2015).

Under both stability-informed frameworks (S-SI and S-SD), a
significant positive correlation was found between RSA and
dNh=dSh, and a significant negative correlation was found be-
tween WCN and dNh=dSh (fig. 3). The correlations between
RSA and dNh=dSh were slightly higher for rates predicted under
the S-SD framework compared with the correlations based on
the S-SI simulations. Similarly, correlations between WCN and
rates predicted under the S-SD were more negative compared
with rates predicted under S-SI. In contrast, the site-specific rates
expected under the C-SI framework did not correlate signifi-
cantly with RSA or WCN. Correlations and P values between
structural properties and dNh=dSh are reported in supplemen-
tary table S1, Supplementary Material online.

Since the true substitution rates are unknown for the nat-
ural proteins, we used traditional codon models to infer sub-
stitution rates x, measured as the normalized ratio of
nonsynonymous to synonymous substitutions. The x-based
codon models use the maximum likelihood framework to
estimate rate parameter (x) conditioned on a known phy-
logeny and multiple sequence alignment. Briefly, the M-series
x-based models partition sites into k categories and estimate
substitution rates x1 < :: < xk, and proportions p1; . . . ;
pk (Yang et al. 2000) (the models are described in more detail
in the Materials and Methods section). In order to assess the
correlation between RSA (and WCN) and substitution rates
in our real alignments, we use the posterior mean xh from
the best fitting M-series model as the site-specific rate esti-
mate. The posterior mean xh at a site is calculated as
ðx1 � Ph

1Þ þ ðx2 � Ph
2Þ þ � � � þ ðxk � Ph

kÞ, where Ph
k is

the posterior probability of the site corresponding to rate
class xk. We found a significant positive correlation between
posterior mean xh and RSA in the 1QHW and 1PEK real
protein alignments (correlation coefficient was 0.39 and
0.53, respectively; both P values <1.0e-10) and a significant
negative correlation between rates and WCN (correlation
coefficient was �0.35 and �0.43 for the 1QHW and 1PEK
alignments, respectively; both P values <1.0e-10). We found
no significant correlation between rates and structural prop-
erties (RSA or WCN) for the 2PPN alignment. The small size of
the 2PPN gene, and the unusual mixture of long and short
edges in its phylogeny (supplementary fig. S1, Supplementary
Material online), is likely problematic for posterior estimation
of x, which could explain the insignificant correlations.

Various alternative methods have been developed to infer
site-specific substitution rates from multiple sequence align-
ments (e.g., Meyes and vonHaeseler 2003; Kosakovsky Pond
and Frost 2005; Massingham and Goldman 2005; Murrell
et al. 2012). However, the estimated rates are subject to large
variability when the number of taxa is relatively small. These
methods are therefore not suitable to infer site-specific rates
for the alignments used here (number of taxa¼ 14, 14, and 12
for 1QHW, 2PPN, and 1PEK). Using large alignments (number
of taxa¼ 300) of more than 200 proteins, Marcos and Echave
(2015) estimated the correlations between rates and RSA and
between rates and WCN. The range of correlations coeffi-
cients between RSA and site-specific rates was between
0.26 and 0.75; the range of correlation coefficients between
WCN and site-specific rates was �0.19 and �0.73. The cor-
relation coefficients we report for both rate measures
(dNh=dSh and posterior mean xh) are within the range
reported in Marcos and Echave (2015). Overall, we found
that the stability-informed models are able to recapitulate
the empirically observed correlations between structural
properties and rates, which suggests that accounting for fold-
ing stability captures important structural features that are
absent in the stability-naı̈ve C-SI framework derived from the
widely used C-series profiles.

FIG. 3. Stability-informed models (S-SI and S-SD) reproduce empiri-
cally observed correlations between substitution rates and structural
features. Fifty alignments were generated with three protein-specific
parameters (1QHW, 2PPN, and 1PEK) under models C-SI, S-SI, and S-
SD. For each alignment, we calculated the Pearson correlation be-
tween the expected site-specific substitution rates dNh=dSh and RSA
(top panel) and WCN (bottom panel). Plotted are the mean correla-
tion coefficients (and standard deviation) across trials.
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Comparing Inferred Substitution Rates and Sequence
Variability between Real and Simulated Data
In order to use the simulations as a means of investigating the
influence of epistasis on rates, we needed to first verify that
the generative models produce plausible substitution rates. In
other words, we needed to compare substitution rates from
the generative models with the rates experienced by real
proteins. We fitted simulated and real alignments to codon
model M3 (k¼ 2) to obtain estimates of substitution rates. A
value of x � 1 is indicative of neutral or nearly neutral evo-
lution where nonsynonymous mutations are fixed at an equal
rate to synonymous mutations. An x value <1 is represen-
tative of purifying selection, and x > 1 is indicative of pos-
itive selection.

Analyses of the natural 1QHW, 2PPN, and 1PEK align-
ments revealed evidence for purifying selection with x1 <
x2 < 1 for all three natural alignments (fig. 4). The maxi-
mum likelihood estimates are reported in supplementary ta-
ble S2, Supplementary Material online. The 2PPN protein
alignment had the lowest rate estimates with x1 ¼ 0:00
and x2 ¼ 0:09 and respective proportions p1 ¼ 0:67 and
p2 ¼ 0:33. The 1QHW and 1PEK alignments had comparable
rate estimates with x1 ¼ 0.01 and 0.02 and x2 ¼ 0.30 and
0.24, respectively; however, the proportion of sites belonging
to the more stringent selection regime (x1) was�10% higher
for the 1QHW alignment (p1 ¼ 0:71) compared with the
1PEK alignment (p1 ¼ 0.64).

Alignments generated under the stability-informed mod-
els (S-SI and S-SD) were also consistent with purifying selec-
tion, with x1 < x2 < 1 for all simulated protein-specific
alignments (fig. 4, first row). The average maximum likelihood
estimates are reported in supplementary table S3,
Supplementary Material online. The x values inferred from
the S-SI-generated alignments were on average significantly
lower than rates estimated from the analogous protein-
specific S-SD simulations and more consistent with the x
values estimated from the natural protein alignments
(fig. 4; Bonferroni corrected P values<1.0e-05 for all compar-
isons, supplementary table S4, Supplementary Material on-
line). With the exception of the 1PEK protein, the natural
alignments were consistently inferred to be under more strin-
gent selection regimes with slightly lower substitution rates.
For the 1PEK simulations, the x2 estimate from the real align-
ment (x2¼ 0.24) alignment was higher than the distribution
of estimates from the S-SI alignments (fig. 4, first row).
Nonetheless, the proportion of quickly evolving sites (p2)
was lower in the real alignment (fig. 4, second row). This
suggests that in the real 1PEK protein, a small proportion
of sites are evolving faster than expected under stability con-
straints. However, when considering all sites in the alignment,
by comparing the single rate estimated under M0, we find
that the rates are largely comparable: x was 0.06 for the real
1PEK alignment and the mean x estimate over the 50 S-SI
trials was 0.07 (supplementary table S3, Supplementary

FIG. 4. Stability-informed models (S-SI and S-SD) generate alignments consistent with real data with respect to substitution rates and amino acid
variability. For each of three natural protein (1QHW, 2PPN, and 1PEK corresponding to the three columns), we generated 50 protein-specific
alignments under simulation models C-SI, S-SI, and S-SD. The first row reports the estimated substitution rates x1 (dark) and x2 (light) inferred
from M3 (k¼ 2). The x distributions are of the 50 model- and protein-specific alignments; the dots are the estimates from the real protein
alignments. The second row reports the proportion of sites in each rate category, p1 (dark) and p2 (light). The third row plots the distributions of
the number of amino acids observed per alignment site.
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Material online). In contrast, rates inferred from the C-SI
simulations were significantly higher than estimates from
the other simulations and from the real proteins
(Bonferroni corrected P values <1.0e-10 for all comparisons,
supplementary table S4, Supplementary Material online). For
the C-SI-generated alignments, the x estimates were sugges-
tive of neutral or weak selection regimes (fig. 4, first row).

Consistent with having the highest x rate estimates, the C-
SI-generated alignments were the most variable with regards
to the number of amino acids observed per site (fig. 4, third
row). Across the three protein-specific simulations, the pro-
portion of fully conserved sites (one amino acid per site) were
significantly lower than those observed from the stability-
informed simulations (Bonferroni corrected P values <1.0e-
10 for all comparisons, supplementary table S4,
Supplementary Material online). Furthermore, the average
fraction of sites with�5 amino acids were significantly higher.
Although the S-SD-generated alignments were more con-
served than the analogous C-SI simulation, the alignments
were more variable compared with the corresponding S-SI
simulations and real alignment. For the 1QHW and 2PPN
alignments generated under S-SD, the distributions of the
number of amino acids per site were largely consistent with
the corresponding real protein alignment; however, the 1PEK-
specific S-SD simulations were strikingly more variable (fig. 4,
third row). This is consistent with results from Goldstein et al.
(2015) which showed that under the S-SD model, the number
of amino acids per site is expected to increase with tree length
(branch lengths are measured as the expected number of
single nucleotide substitutions per codon site). In general,
we found that the S-SI simulations were the most consistent
with the real alignments. In both the S-SI-simulated align-
ments and the natural alignments, 1) the most common
site pattern included only one amino acid for all protein
alignments and 2) the 2PPN proteins were the most con-
served compared with the 1QHW and 1PEK proteins. The
number of amino acids per site was on average slightly more
conserved for the real alignments than the S-SI simulations
which is consistent with the natural proteins being subject to
additional selective constraints beyond folding stability.

Epistasis Increases Substitution Rates Compared with
Site Independent Evolution
Comparing Expected Substitution Rates in the Presence and

Absence of Epistatic Interactions
Values of x estimated from the S-SD alignments were on
average higher than estimates from the S-SI simulations (fig. 4,
first row). This suggests that epistasis, as modeled in the S-SD
framework, might lead to an increase in substitution rates
compared with site-independent evolution. However, it
remains unclear if the observed increase in rates is a genuine
outcome of epistasis or a consequence of inference model
misspecification. To address this, we compared the expected
site-specific substitution rates calculated directly from the S-SI
and S-SD generating frameworks. Consistent with our finding
that epistasis increased the inferred substitution rates, the
distributions of expected dNh=dSh were more positively

skewed (higher) when epistasis was included (S-SD) for all
three protein-specific simulations compared with the rates
expected had sites evolved independently (S-SI; fig. 5). Rate
distributions predicted from the S-SI model often displayed
three peaks at dNh=dSh values representative of highly strin-
gent selection regimes (dNh=dSh � 0.00), moderate selection
pressures (dNh=dSh � 0:25), and more relaxed selection
(dNh=dSh � 0:4). The position of the peaks differed only
slightly depending on the protein-specific simulation (fig. 5,
second row). Rate distributions estimated from S-SD were
bimodal with considerably fewer sites under highly stringent
selection (dNh=dSh � 0) compared with the analogous S-SI
protein-specific distribution (fig. 5). Furthermore, more sites
were under weak selection pressures under S-SD compared
with S-SI; the percentage of sites with dNh=dSh > 0:5 under
(S-SI, S-SD) were (8.5%, 17.2%), (2.9%, 4.2%), and (3.9%, 10.8%)
for the 1QHW, 2PPN, and 1PEK simulations, respectively.

An advantage of the S-SI and S-SD frameworks is that for
each site evolving with epistatic dependencies (under the
temporally dynamic S-SD), we are able to model an analogous
site evolving independently and under the same average sta-
bility restrictions (under the time-homogenous S-SI). To as-
sess the magnitude of the effect of epistasis on evolutionary
rates, we calculated the difference in substitution rates under
epistasis (S-SD) and site-independence (S-SI). Averaged over
all sites in the alignment, the mean differences in rates were
0.07, 0.08, and 0.11 for the 1QHW, 2PPN, and 1PEK simula-
tions, respectively, implying that across the whole protein
epistasis had a modest effect on substitution rates.
However, site-wise analyses of rate differences revealed that
epistasis increased the expected substitution rate at 88.8%,
89.5%, and 84.3% of sites in the 1QHW, 2PPN, and 1PEK
simulations. The largest differences in dNh=dSh rates were
observed at sites subject to stringent selection regimes under
site-independence (dNh=dSh < 0:2, fig. 6). The less frequent
and more minor reductions in rates due to epistasis occurred
at sites evolving close to neutrality with dNh=dSh � 1 under
site-independence.

Evaluating the Relationship between Epistatic Sensitivity and

Structural Features
The previous result suggests that epistasis has a variable im-
pact across sites. We were therefore interested in assessing the
properties which made a site more or less sensitive to epis-
tasis. To do this, we calculated a site’s “epistatic sensitivity” by
measuring the variability in the expected substitution rate
given different background sequences. Since the vast majority
of randomly generated sequences have zero probability of
folding correctly, we used the sequences from the S-SD
protein-specific alignments as the set of possible background
sequences. Therefore, the number of background sequences
was 50� N, where N¼ f14, 14, 12g is the number of taxa for
the 1QHW, 2PPN, and 1PEK simulations, respectively.

If the substitution rate at a site was minimally influenced
by the background sequence, then we expect little variation
in dNh=dSh values. Alternatively, if the rate at a site was
heavily influenced by the residues present at other positions,
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FIG. 5. M-series inference models capture the most common substitution rates across sites. Histograms represent the distributions of expected
site-specific substitution rates, dNh=dSh , calculated from simulation models C-SI, S-SI, and S-SD (row) with protein-specific parameters (column).
The boxplots represent the distribution of maximum likelihood rate estimates, x1 < x2, under M3 (k¼ 2) for proteins 1QHW and 2PPN and M3
(k¼ 3) for protein 1PEK (x1 < x2 < x3). Note the difference in x axis range in the top row (0.0–1.5) and the bottom rows (0.0–1.0).

FIG. 6. Epistasis results in an increase the expected substitution rate at a site, dNh=dSh , compared with the expectation under site-independent
evolution. Analysis was completed for three protein structures: 1QHW, 2PPN, and 1PEK (columns). Top panels show the relationship between
dNh=dSh under a S-SI model (rates calculated using eq. 4) and a S-SD model (rates calculated using eq. 5). Epistasis increased substitution rates at
88.8%, 89.5%, and 84.3% of sites in the 1QHW, 2PPN, and 1PEK proteins. Bottom panels show the difference in dNh=dSh under S-SD compared with
the rate under S-SI. Positive values indicate that rates are expected to be higher when epistatic interactions are included. The mean differences in
rates were 0.07, 0.08, and 0.11 for the 1QHW, 2PPN, and 1PEK simulations, respectively.
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we expect higher variance in the dNh=dSh values depending
on the background protein sequence. We found that the
degree of epistatic sensitivity correlated significantly with
structural properties, specifically RSA and WCN. The correla-
tion coefficient (P value) between RSA and epistatic sensitiv-
ity was 0.34 (1.00e-09), 0.39 (3.84e-05), and 0.32 (4.6e-08) for
the 1QHW, 2PPN, and 1PEK protein structures. Similarly, a
significant correlation was observed between WCN and epi-
static sensitivity with r ¼ �0.38 (1.03e-11), �0.42 (7.64e-06),
and �0.22 (2.1e-04) for the 1QHW, 2PPN, and 1PEK protein
structures. Note that the correlations are not due to increased
variability at sites with higher mean rates (see supplementary
table S5, Supplementary Material online, for additional anal-
yses of the correlation between RSA (and WCN) and epistasis
sensitivity calculated as the standard deviation in the log of
the rate). Therefore, the results suggest that sites near the core
of the protein structure, with low solvent exposure (RSA) and
high packing density (WCN), were more robust to changes in
the background protein sequence compared with solvent-
exposed residues (high RSA and low WCN). Supplementary
figure S2, Supplementary Material online, shows the relation-
ship between epistatic sensitivity and number of contacts for
all three proteins.

The observation that highly connected sites are less influ-
enced by epistasis may initially appear counterintuitive.
However, consider a highly connected site at which the fitness
landscape needs to be compatible with the amino acid resi-
dues present at several interacting positions. A change at a
few of the many neighboring amino acids has negligible effect
on a fitness landscape that is otherwise highly constrained by
its many contacts; hence, there are minimal impacts on dNh

=dSh values. We illustrate this using a buried site and an
exposed site in the 1QHW protein (fig. 7A). For buried site
41 (RSA¼ 0.01 and WCN¼ 1.27), the standard deviation in
dNh=dSh was 0.04 across all 50� 14 background sequences.
The fitness landscape at site 41 given four background
sequences with increasing divergence levels is plotted in
figure 7B (top panels). Amino acid isoleucine (I) was consis-
tently the fittest at site 41, followed by amino acids valine (V)
and leucine (L) across the different background sequences. At

equilibrium, the site will primarily be occupied by the optimal
amino acid (I) and most nonsynonymous mutations will be
deleterious resulting in a low dNh=dSh as expected given the
correlations between RSA (or WCN) and dNh=dSh (fig. 3). By
contrast, consider a surface site which tends to have fewer
contacts. A substitution at one of the few interacting posi-
tions is more likely to induce a larger shift in amino acid
preferences and consequently alter the expected substitution
rate. This is illustrated in the bottom panels of figure 7B,
which show the fitness landscapes at surface site 73 of the
1QHW protein (RSA¼ 0.82, WCN¼ 0.79, standard deviation
in dNh=dSh ¼ 0.11).

Traditional x-Based Codon Substitution Models
Perform Well despite Their Site-Independence
Assumption
Assessing the Accuracy of Substitution Rate Inference under

M-Series Codon Models
We have thus far shown that epistasis impacts substitution
rates; however, traditional codon models used to infer selec-
tion pressures assume that sites evolve independently. Does
neglecting to account for epistasis bias inference from tradi-
tional x-based models? Furthermore, x-based models as-
sume that a small number of rate categories are sufficient
to account for the among-site rate heterogeneity. It is there-
fore important to compare errors in estimation due to epis-
tasis with the baseline estimation errors arising from
unmodeled variability in rates across sites. Comparing the
inferred substitution rates (x) from the S-SI simulations to
the theoretical rate expectations dNh=dSh, allows us to assess
the inference of rates in the presence of among-site rate
heterogeneity but without temporal changes in rate due to
epistasis. The S-SD simulations allow us to assess the perfor-
mance of x-based models in the presence of among-site rate
heterogeneity and epistasis.

First, we used the M3 (k) versus M3 (kþ 1) likelihood ratio
test to determine the number of significant rate categories
from each alignment (table 2). Three factors influence the
number of significant rate categories: simulation model,

FIG. 7. Buried sites are more robust to changes in the background protein sequence compared with exposed sites. (A) The structure of the 1QHW
protein. Arrows indicate the location of buried site 41 (RSA¼ 0.01 and WCN¼ 1.27) and exposed site 73 (RSA¼ 0.82 and WCN¼ 0.79). (B) The
fitness landscapes at buried site 41 (top panels) and exposed site 73 (bottom panels) given different background sequences (columns). The
reported sequence identities are in reference to the background sequence used to determine the landscapes in the left-most column.
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protein length, and tree length. Within each protein-specific
simulation, we found that the C-SI alignments had the lowest
number of significant tests for three rate categories compared
with S-SI and S-SD simulations. This is perhaps expected since
the C-SI simulations had less heterogeneity in rates across
sites compared with the stability-informed models. Each C-
SI alignment had at most 20 unique rate categories, whereas
under S-SI and S-SD each site had a unique fitness land-
scape(s) (see Materials and Methods section for details).
Second, within each generating framework, the 2PPN-specific
simulations had the lowest number of significant results for
three rate categories. The 2PPN alignments were much
smaller with only 107 codon sites compared with the
1QHW (300 codon sites) and 1PEK (279 codon sites) align-
ments. This suggests that there is less power to detect addi-
tional rate components with fewer sites. Lastly, despite similar
numbers of codon sites, a larger number of the 1PEK-specific
simulations displayed significant evidence for three rate cat-
egories compared with the 1QHW-specific simulations. There
are two potential reasons for this observation: 1) the number
of rate categories is influenced by the protein structure such
that the 1PEK contact map induces more variation in rates
across sites compared with the 1QHW structure or 2) there is
more power to identify rate heterogeneity with deeper trees
(1PEK tree length ¼ 13.88, 1QHW tree length ¼ 4.93). To
distinguish between these two possibilities, we conducted an
additional experiment: We generated 1QHW-specific align-
ments under the three generative frameworks (C-SI, S-SI, and
S-SD) along the 1QHW phylogeny with double the branch
length (blx2, table 2) and 1QHW-specific mutation parame-
ters (table 1). From these additional simulations, we found an
increase in detection of three rate categories across all gener-
ative models. More importantly, the number of significant
tests for three rate categories was now comparable to those
from the 1PEK-specific simulations (table 2). These results
support the notion that deeper trees provide more informa-
tive site patterns for the detection of among-site rate
heterogeneity.

Overall, we found that the number of rate categories in-
ferred using the M3 (k)–M3 (kþ 1) likelihood ratio test was
consistent with the number of peaks observed in the corre-
sponding dNh=dSh distribution. We next asked whether the
inferred substitution rates (x) corresponded to the expected

rates (dNh=dSh). For the 1QHW- and 2PPN-specific simula-
tion, two rate categories were most commonly detected in
the S-SI simulations. The first rate category was reflective of
the sites subject to highly stringent selection regimes with low
substitution rates (x1 � 0). The second rate category often
took on values representative of the average of the tail of the
dNh=dSh distribution (fig. 5, second row). For the S-SD sim-
ulations, the inferred x values were consistent with the most
common rates with x1 values comparable to the first peak in
the dNh=dSh distribution and x2 approximating the second
peak (fig. 5, third row). More than half of the 1PEK-simulated
alignments showed significant evidence for three rate cate-
gories; 28/50, 39/50, and 43/50 under C-SI, S-SI, and S-SD,
respectively (table 2). Consequently, for the 1PEK simulations,
we compared the distributions of expected dNh=dSh rates
with the x1;x2, and x3 distributions estimated under M3
(k¼ 3) and found that the rates inferred using traditional
codon models tended to capture the most common rate
categories (i.e., the distribution of x values corresponded to
peaks in the dNh=dSh distributions, fig. 5). Therefore, in the
presence and absence of epistasis, the x estimates were con-
sistent with the most common rate expectations.

The distributions of dNh=dSh under S-SD and S-SI are rich
distributions showing variation like that of a continuous

Table 1. Protein-Specific Mutation Parameters Estimated from the
Natural Alignments for Proteins 1QHW, 2PPN, and 1PEK under x-
Based Model M3 (k¼ 3).

1QHW 2PPN 1PEK

K 4.372 2.503 0.904
pA 0.205 0.268 0.188
pC 0.318 0.245 0.346
pG 0.280 0.294 0.258
pT 0.197 0.192 0.208
Number of taxa 14 14 12
Number of sites 300 107 279
Tree length 4.93 8.04 13.88

NOTE.—j is the transition-to-transversion ratio and pj is the stationary frequency of
nucleotide j.

Table 2. Model Contrasts for Real and Simulated Alignments from
Three Proteins (1QHW, 2PPN, and 1PEK).

Model Contrast 1QHW 1QHW blx2 2PPN 1PEK

Real
M0 versus M3 (k 5 2) Yes — Yes Yes
M3 (k 5 2) versus M3 (k 5 3) Yes — No Yes
M3 (k 5 3) versus M3 (k 5 4) No — No No
M3 (k 5 2) versus CLM3 Yes — No Yes
BUSTED (x3 < 1) versus BUSTED No — No Yes
Tree length 4.93 — 8.04 13.88

C-SI
M0 versus M3 (k 5 2) 50 50 50 50
M3 (k 5 2) versus M3 (k 5 3) 6 19 1 28
M3 (k 5 3) versus M3 (k 5 4) 0 0 0 3
M3 (k 5 2) versus CLM3 7 30 17 33
BUSTED (x3 < 1) versus BUSTED 0 0 0 0
Mean tree length 5.27 10.48 7.55 13.32

S-SI
M0 versus M3 (k 5 2) 50 50 50 50
M3 (k 5 2) versus M3 (k 5 3) 21 42 7 39
M3 (k 5 3) versus M3 (k 5 4) 0 15 0 3
M3 (k 5 2) versus CLM3 10 23 14 22
BUSTED (x3 < 1) versus BUSTED 0 0 0 0
Mean tree length 4.99 9.35 7.15 12.45

S-SD
M0 versus M3 (k 5 2) 50 50 50 50
M3 (k 5 2) versus M3 (k 5 3) 15 42 16 43
M3 (k 5 3) versus M3 (k 5 4) 2 0 0 4
M3 (k 5 2) versus CLM3 25 47 35 50
BUSTED (x3 < 1) versus BUSTED 0 0 1 0
Mean tree length 5.04 9.65 7.57 14.18

NOTE.—The 1QHW blx2 results are from simulations on the 1QHW tree with
double the branch length. Reported are the number of alignments out of 50 for
which the specified likelihood ratio test was significant. Alignments were generated
under simulation models C-SI, S-SI, and S-SD. The mean total tree lengths from M3
(k¼ 3) are also reported.
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distribution (fig. 5). Due to computational limitations (related
to use of the pruning algorithm), x-based models can only
approximate these distributions discretely. Some care is thus
required in defining the target of x-based model estimation.
We assessed the performance of x-based models in two ad-
ditional ways. First, we looked at the correlations between
expected site-specific rates (dNh=dSh) and the posterior
mean xh inferred based on the best fitting M-series model.
For rates calculated based on the stability-informed models
(S-SI and S-SD), the correlations were significant in all 50
model- and protein-specific trials. The mean correlation coef-
ficients and P values are reported in supplementary table S6,
Supplementary Material online. The average correlation coef-
ficients between dNh=dSh and the posterior mean xh ranged
from 0.24 to 0.40 under C-SI, 0.68 to 0.79 under S-SI, and 0.67
to 0.74 under S-SD.

Second, under M3 (k¼ 2), xc is interpretable as the sub-
stitution rate averaged over time and across sites belonging to
the rate class c¼ 1 or 2. Therefore, a potential way of address-
ing the performance of M3 (k¼ 2) is by resolving sites
according to the posterior probability of belonging to rate
class (Pc) and calculating the average expected rate
dNc=dSc ¼ 1=n

P
hPh

c dNh=dSh. We compared the excepted
dNc=dSc with the inferred xc values for respective rate class c;
the relative error in rate estimates is plotted in figure 8. As
expected, the errors were lowest for alignments generated
under C-SI, since the generating model was the most consis-
tent with inference model assumptions (rates under C-SI are
independent and identically distributed). Nonetheless, the x1

values were often underestimated. Based on the results of
Spielman and Wilke (2015), we suspect that the underesti-
mation is due to the asymmetry in the mutation models
(lij 6¼ lji) present in all protein-specific simulations (table 1).
Importantly, and consistent with results from figure 5, the
relative error in x estimates was comparable across S-SI and
S-SD simulations. This supports the previous conclusion that
the performance of x-based models is somewhat robust to
epistatic effects.

Detecting Temporal Fluctuations in Substitution Rates and

Positive Selection
By framing the S-SI and S-SD models within the MutSel
framework, differences in site-wise evolutionary dynamics be-
tween the site-independence assumption and epistatic evo-
lution become apparent. Under the traditional site-wise
MutSel framework, the substitution process is modeled inde-
pendently at each position and hence the fitness effect of a
mutation is not influenced by the background protein se-
quence with fixed site-specific fitness landscapes (fig. 1B).
Shifts in fitness landscapes (nonstationary dynamics) are
interpreted as evidence of adaptive events where external
changes in environment or gene function result in changes
in the amino acid preferences at the site (dos Reis 2015; Jones
et al. 2017). However, if a site is subject to epistatic interac-
tions, the site-specific fitness landscape, and hence the
expected substitution rate at the site, is influenced by the
residues present at other positions. Epistasis, therefore,
implies a nonstationary substitution process over time such
that the fitness landscape at a site constantly changes because
of substitutions at other positions (fig. 1A), even when there
are no adaptive events.

We were therefore interested in assessing whether tradi-
tional x-based inference models are able to detect temporal
rate fluctuations due to epistasis. However, it is important to
note that using the MutSel framework, Jones et al. (2017)
previously observed that site-independent evolution can re-
sult in a detectable signal for temporal variation in substitu-
tion rates (at evolutionary equilibrium) by a process
reminiscent of Wright’s nonadaptive phase of shifting. This
occurs when a site accepts a mutation due to drift to a
suboptimal amino acid which is then followed by a transient
period of higher rates of nonsynonymous fixations as the site
evolves toward the peak of the landscape. Additionally, they
found that these dynamics can result in site patterns consis-
tent with positive selection when tested using the BUSTED
(x3 < 1) versus BUSTED likelihood ratio test. It is therefore
important to compare the results due to epistasis with the

FIG. 8. The accuracy of rate estimation under M-series model is comparable when alignments are generated with and without epistasis. Plotted is
the relative error (xc=ðdNc=dScÞ � 1) in rate estimation under M3 (k¼ 2) for alignments generated under C-SI model, S-SI, and S-SD for each of
the three proteins (1QHW, 2PPN, and 1PEK). The lighter points represent the relative error from each of the 50 model- and protein-specific trials.
The darker points are the average values across trials and the bars are the standard deviation.
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baseline detection rates expected due to nonadaptive shifting
balance.

We used the M3 (k¼ 2)-CLM3 model comparison to test
for temporal variations in rates. M3 (k¼ 2) serves as the null
model, whereas the covarion-like CLM3 accounts for tempo-
ral switches between x1 and x2 by estimating a d parameter
interpretable as the expected number of rate switches per
substitution. We found that the number of significant tests
for temporal rate shifts was mainly influenced by two factors:
the tree length and the generative model. Consistent with the
results reported in Jones et al. (2017), we found that the
number of trials for which CLM3 was the better fitting model
increased with tree length (table 2), this was true for all gen-
erative models and all protein-specific simulations. In regard
to the generative model, within each set of protein-specific
simulations, the number of trials with evidence for tem-
poral switching was highest for the S-SD simulations com-
pared with alignments generated from the site-
independent frameworks (C-SI and S-SI). Furthermore, d
was estimated to be at least two times higher in the S-SD
simulations compared with the S-SI simulations (table 3).
For the 1QHW-, 2PPN-, and 1PEK-simulated alignments, d
was estimated to be (0.062, 0.148), (0.046, 0.182), and
(0.031, 0.106) when simulated under (S-SI, S-SD). These
results suggest that temporal variations in rates due to
stability-induced epistasis produce a detectable signal in
excess of the baseline signal expected due to nonadaptive
shifting balance on static fitness landscapes.

Surprisingly, none of the simulated alignments showed
significant evidence of positive selection using the BUSTED
(x3 < 1)–BUSTED likelihood ratio test, with the exception
of only 1/50 S-SD-generated alignments with 2PPN-specific
parameters (table 2). This is in contrast with previous results
where nonadaptive shifting balance produced evidence of
positive selection in up to 40% of trials (Jones et al. 2017).
This suggests that shifting balance dynamics can be suffi-
ciently different when fitness landscapes are informed by sta-
bility constraints rather than being randomly drawn from a
normal distribution. However, this hypothesis warrants fur-
ther analyses, which are beyond the scope of this article, since
the lack of detection could be a consequence of the range of
simulation parameters evaluated here.

Discussion
We have examined the influence of stability-induced epistasis
on expected and inferred substitution rates and assessed the

accuracy of rate estimation from traditional x-based models.
We found that epistasis resulted in minor elevations in sub-
stitution rates considering sites across the whole protein.
However, the impact of epistasis on site-specific dynamics
was prominent. A site evolving with epistatic effects on fitness
had higher substitution rates compared with an analogous
site evolving independently and under the same average sta-
bility constraints. Under site-independence, theory predicts
that purifying selection will maintain the site on or near the
fitness optima of the fixed fitness landscape (i.e., the site will
predominantly be occupied by the optimal amino acid). Most
nonsynonymous mutations will be deleterious and are elim-
inated from the population resulting in low rates of nonsy-
nonymous substitutions relative to the rates of synonymous
substitutions (low dNh=dSh). In comparison, consider an ep-
istatic site h and suppose that the site is occupied by the
fittest residue, a, given the current background sequence
S. Following a substitution at another position in the protein
(so that the background sequence changes from S to X), the
fitness landscape at site h will change (fig. 1B). If the change
maintains a as the fittest residue, then the substitution rate
will remain low. On the other hand, if the change in landscape
renders amino acid a suboptimal, then over some period of
time the site will be occupied by a suboptimal amino acid.
Therefore, the change in fitness landscape induces a change in
the amino acid equilibrium frequencies (supplementary fig.
S3, Supplementary Material online). Since the expected sub-
stitution rate, dNh=dSh, is a function of the equilibrium fre-
quencies (eqs. 4 and 5), and since epistatic sites are more likely
to be occupied by suboptimal amino acid (supplementary fig.
S4, Supplementary Material online), the expected substitu-
tion rate will consequently be higher compared with site-
independence. In other words, in the presence of epistasis,
sites must constantly adapt to amino acid replacements oc-
curring at other positions in the protein which results in
higher substitution rates.

The observation that epistasis increased substitution rates
contrasts with previous results discussed in Rodrigue and
Lartillot (2017), which found that epistasis most often de-
creased substitution rates compared with site-
independence. The discrepancy between our results and
theirs is likely because of differences in the way epistatic
interactions are modeled and because of differences in
expectations of what the rate would have been under site-
independent evolution. Rodrigue and Lartillot (2017) model
epistasis as random deviations from multiplicative fitness and
consider the effect of an epistatic landscape by comparison

Table 3. Mean Maximum Likelihood Estimate (MLE) under CLM3 from 50 Simulated Alignments under Models (C-SI, S-SI, or S-SD) with Protein-
Specific Parameters (1QHW, 2PPN, or 1PEK).

Simulation Model 1QHW 2PPN 1PEK
Mean MLE Mean MLE Mean MLE

C-SI x1 ¼ 0:268;x2 ¼ 0:983 x1 ¼ 0:321;x2 ¼ 5:458 x1 ¼ 0:232;x2 ¼ 2:743
p1 ¼ 0:440; d ¼ 0:385 p1 ¼ 0:579; d ¼ 0:267 p1 ¼ 0:449; d ¼ 0:159

S-SI x1 ¼ 0:028;x2 ¼ 0:449 x1 ¼ 0:006;x2 ¼ 0:290 x1 ¼ 0:004;x2 ¼ 0:181
p1 ¼ 0:589; d ¼ 0:062 p1 ¼ 0:649; d ¼ 0:046 p1 ¼ 0:489; d ¼ 0:031

S-SD x1 ¼ 0:052;x2 ¼ 0:520 x1 ¼ 0:024;x2 ¼ 0:424 x1 ¼ 0:033;x2 ¼ 0:314
p1 ¼ 0:635; d ¼ 0:148 p1 ¼ 0:587; d ¼ 0:182 p1 ¼ 0:363; d ¼ 0:106
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with a randomly assigned fixed fitness landscape. Here, we
implicitly model epistasis as a by-product of protein stability,
and we compare the rates from a model that accounts for
protein stability but no epistasis (S-SI) to a model that
accounts for stability and includes temporal rate fluctuations
due epistasis (S-SD). As such, both an epistatic and an inde-
pendently evolving stability-informed site are subject to the
same average stability constraints, however, the epistatic site
experiences fluctuating fitness landscapes whereas the inde-
pendent site is evolving on a fixed landscape (fig. 1A and B).
Our approach allows for a direct way of investigating the
influence of epistasis on protein evolution.

Since substitution rates are primarily determined from the
fitness coefficients, we expect that dynamic fitness landscapes
due to epistasis will induce fluctuations in substitution rates
over time. The variation in rate may be transient, where
preferences at the site shift from some subset of amino acids
to another, for example, polar residues might be preferred in
one background sequence whereas nonpolar residues might
be preferred given another sequence. For a short period of
evolutionary time, the substitution rate will be transiently
high as the site adjusts to the new peak (dos Reis 2015).
Alternatively, a shift from a more-uniform to a more-
rugged landscape (or vice versa) would result in a sustained
difference in rate from low to high (or high to low). To test if
such dynamics are detectable using traditional x-based infer-
ence models, we conducted the M3-CLM3 likelihood ratio
test on all simulated alignments. Although we were able to
detect evidence of temporal rate variations under epistasis, it
is important to note that Jones et al. (2017) showed that
evolution on fixed fitness landscapes can also result in detect-
able signal for temporal variations in rates. They described a
process reminiscent of the nonadaptive phase of Wright’s
shifting balance where a deleterious substitution due to drift
moves a site away from its fitness peak and is followed by a
transient period of high rates of nonsynonymous substitu-
tions as the site evolves back to the fitness optima. In this way,
epistasis and shifting balance result in similar temporal rate
dynamics; a site becomes occupied by a suboptimal amino
acid and subsequent nonsynonymous mutations are fixed in
order to readjust to the fitness peak. The difference, however,
is that under site-independence the site is destabilized due to
a chance deleterious substitution at the site. In contrast, un-
der epistasis, the site is destabilized because of a substitution
at another position causing a shift in the underlying fitness
landscape. We found that the intensity of temporal rate
switching was on average at least two times higher because
of epistasis compared with the switching rates due to shifting
balance. The higher switching rates is perhaps expected since
shifting balance dynamics are contingent on the rare fixation
of deleterious mutations by drift, whereas epistasis subjects
sites to continuous changes in fitness landscapes.

Moreover, nonadaptive shifting balance dynamics were
previously shown to elevate x rates to values >1 (Jones
et al. 2017), resulting in the canonical signal for positive se-
lection. Specifically, Jones et al. (2017) reported significant
evidence for positive selection at 10–40% of trials when
branch lengths were sufficiently long (total tree length was

at least seven substitutions per codon site). Here, two of the
three phylogenies used for simulations had a total tree length
>7 substitutions per codon site (the 2PPN and 1PEK phylog-
enies). However, we found no evidence for positive selection
when alignments were generated with stability-informed fit-
ness landscapes (with and without epistasis). Importantly,
these results suggest that realistic fitness landscapes based
on stability constraints are not a source of conflation for
the canonical signal for adaptive evolution (x > 1) when
tested using traditional x-based inference models.

Inference models operate on a set of assumptions that are
certainly incorrect for real protein evolution. Two of the most
pervasive assumptions are that sites evolve independently,
and that the variability in rates among site is accurately ap-
proximated by a small number of rate categories. We find that,
despite not accounting for epistasis, x-based inference models
perform comparably well when alignments are generated with
and without epistatic interactions. A potential explanation for
the comparability in model performance is that the magni-
tude or frequency (or both) of changes in amino acid prefer-
ences as a by-product of stability-induced epistasis are minor
throughout evolutionary history. This supports previous com-
putational and experimental work showing that, with respect
to their impact on protein stability, amino acid fitness effects
tend to remain relatively well conserved over long evolution-
ary times (Ashenberg et al. 2013; Risso et al. 2015). Our results
suggest that, while accounting for epistasis is essential for un-
derstanding how proteins evolve, the site-independence as-
sumption does not appear to limit the utility or accuracy of
traditional inference models at identifying average selective
pressures acting on natural proteins.

To address the concern that among-site rate variation
might not be well approximated by a small number of rate
categories, more sophisticated inference models based on the
MutSel framework were developed that permit a unique sub-
stitution process at each alignment site (Rodrigue et al. 2010;
Tamuri et al. 2012, 2014; Rodrigue and Lartillot 2014).
However, these frameworks are generally only applicable
when large phylogenies (>100 taxa) are available in order
to reliably estimate site-specific parameters (e.g., the amino
acid frequencies at each site, 19 parameters per site).
Therefore, inference from smaller data sets must rely on tra-
ditional x-based inference models which group sites into a
small number of categories and estimate a much smaller
number of parameters. Although we found that the full ex-
tent of site-wise rate heterogeneity was not detectable by
traditional models, the number of significant rate categories
was widely consistent with the number of peaks in the dis-
tributions of expected rates. This suggests that traditional
inference models are capable of detecting among-site hetero-
geneity when a sufficient number of sites share similar rates.
Additionally, and perhaps more importantly, the x values
estimated were comparable to the theoretical rate expect-
ations at the two or three clusters of sites. Furthermore, we
found that the posterior mean xh calculated from simple M-
series models correlated significantly with the expected rates.
Overall, our results suggest that x-based models sufficiently
describe average selective pressures.
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The MutSel framework and biophysical models are a step
toward more mechanistically plausible generative frame-
works. Nonetheless, our models are limited by any underlying
assumptions about the evolutionary process that are incon-
sistent with real protein evolution. The population genetics
theory underlying the MutSel framework assumes mutations
enter a population at an extremely low rate followed by a
near-instantaneous fixation or loss. As such, a system might
not be well modeled by MutSel when the dynamics of stand-
ing polymorphism can impact substitution rates (e.g., ex-
tended residence times for polymorphism, selective
interference, and stochastic tunneling in large population),
or the mutation rate is high (e.g., viral systems). As our goal
was to model an evolutionarily conserved property (stability
constraints) for lineages having low mutation rates and rela-
tively small effective sizes, MutSel substitution dynamics are
expected to be appropriate.

The principles of thermodynamics underlying the biophys-
ical model assume a simple two-state folding process where
proteins are either correctly folded or unfolded. Small mono-
meric proteins (< 100 amino acids) can fold in this way
(Jackson 1998); however, larger proteins require stable inter-
mediate structures to fold properly. Of the protein structures
used here, and previously within this framework (Goldstein
2011, 2013; Pollock et al. 2012; Goldstein and Pollock 2016,
2017), only the 2PPN protein has been experimentally shown
to fold following the two-state process (Jackson 1998). In fact,
although it is the largest protein known to fold without the
need of intermediate structures, it is the smallest protein to
ever be used within this thermodynamic framework. More
generally, the three structures used here differ in important
ways (e.g., biological function, protein length, and packing
density); nonetheless, we observed similar consequences of
epistasis on substitution rates which suggests that the results
may be generalized across stable, globular proteins.

The current formulation of the biophysical model is lim-
ited to stable proteins with a known three-dimensional struc-
ture and therefore does not characterize the evolutionary
dynamics of intrinsically disordered proteins or proteins
with multiple conformations. The three-dimensional struc-
ture is used to approximate the free energy of a sequence
in a given native state. Various methods have been developed
to estimate stability values upon mutations (e.g., FoldX
[Guerois et al. 2002] and Rosetta [Rohl et al. 2004]). In this
study, we used the Miyazawa–Jernigan contact potentials
with the pairwise energy approximation for its computational
manageability and because even the most sophisticated mod-
els at best only moderately predict mutational effects
(Potapov et al. 2009). Furthermore, this model was sufficient
because we did not require exact amino acid sequences that
can be folded in the native structure; that is a demanding task
even when more computationally exhaustive methods are
used. Instead, our objective was to simulate plausible evolu-
tionary dynamics, and we have shown that the modeling
framework is sufficient for this purpose. In addition, the mod-
els used here assume selection acting only on protein stability,
whereas natural proteins are subject to additional functional
and structural constraints. A recent approach was presented

by de la Paz et al. (2020) using multiple sequence alignments
of natural protein families (1,000 sequences) to estimate
global epistatic contributions. The approach reproduces em-
pirical and theoretical phenomena and is a promising tool for
improving our understanding of protein evolution.

To conclude, we have found that epistasis alters the dy-
namics of how proteins evolve. It is therefore important to
model epistatic interactions when the objective is to gain
intuition and develop a deeper understanding of how protein
sequences change over time. However, with regards to infer-
ence of selective pressures, our analysis suggests that explicit
modeling of epistasis might not be of paramount importance.
Instead, accounting for the phenomenological outcomes of
epistasis, in allowing for more diversity in among-site amino
acid preferences (Tamuri et al. 2014; Rodrigue and Lartillot
2017) and/or accounting for temporal fluctuations in substi-
tution rates (Murrell et al. 2015; Jones et al. 2017), offers a
promising avenue for the future development of inference
models.

Materials and Methods

Natural Protein Alignments
Three globular, monomeric proteins were used throughout
this study with PDB codes 1QHW, 1PEK, and 2PPN. The
1QHW structure is from a purple acid phosphatase protein
extracted from rat bone and is likely involved in bone resorp-
tion (Lindqvist et al. 1999). The 2PPN protein is a peptidyl-
prolyl cis–trans isomerase extracted from human cells which
facilities the folding of other proteins (Szep et al. 2009). The
1PEK protein is a proteinase K used in protein digestion. The
structure was extracted from Engypdontium album (Betzel
et al. 1993). The three protein structures differ in important
ways. First, we included the 1QHW protein for consistency
since it is the only protein to have previously been used in this
modeling framework. We included the 2PPN protein because
of its smaller size (it is approximately a third of the length of
the other two proteins) and, more importantly, because it has
been shown to fold following the two-state folding (Jackson
1998) and therefore does not violate one of the core thermo-
dynamic model assumption. Lastly, we selected the 1PEK
protein because, although it is comparable in length to the
1QHW protein, it is a more densely packed protein. The av-
erage number of contacts per site was 8.39 for the 1PEK
protein compared with 7.5 for the 1QHW protein (and 6.9
for the 2PPN structure).

For each of the three proteins, we created a multiple se-
quence alignment of orthologous gene sequences using
MUSCLE (Sievers et al. 2011). Protein sequences were chosen
if there were no insertions or deletions since that will likely
imply changes in the protein structure which are not
accounted for in the modeling framework. The accession
numbers for the gene sequences are reported in supplemen-
tary table S7, Supplementary Material online. The 1QHW and
2PPN alignments included gene sequences from fourteen
taxa, whereas the 1PEK alignment was made up of 12 sequen-
ces. The length of the 1QHW, 2PPN, and 1PEK alignments
were 300, 107, and 279 codon sites, respectively (table 1).
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For each protein alignment, we inferred a phylogenetic
tree using IQ-TREE (Nguyen et al. 2015) with ModelFinder
(Kalyaanamoorthy et al. 2017) and ultrafast bootstrapping
(Minh et al. 2013) (supplementary fig. S1, Supplementary
Material online). Maximum likelihood estimates yielded a
wide range of tree lengths (table 1) which allowed us to in-
vestigate how the relationship between model assumptions
and substitution rate was affected by tree length.

Following the protocol outlined in Sydykova et al. (2018),
we calculate RSA and WCN for all sites in each of the protein
structures. RSA is the ratio of a residue’s solvent-accessible
surface area, calculated using DSSP (Kabsch and Sander 1983),
to its maximum solvent-accessible surface area. WCN is cal-
culated as

P
j6¼j1=r2

ij where rij is the distance between the
geometric centers of the side chains of residues occupying
sites i and j.

Simulation Models
Mutation-Selection
We generated sequence alignments using three simulation
models: C-SI, S-SI, and S-SD. The simulation models differ in
how fitness values are calculated (stability-informed, S-, or
estimated from C-series profiles, C-) and whether they model
sites as evolving independently or with epistatic interaction
(-SI vs. -SD, respectively). We used the phylogenetic trees
(supplementary fig. S1, Supplementary Material online) and
mutation parameters (table 1) estimated from the real pro-
tein alignments to generate 50 protein-specific alignments
under C-SI, S-SI, and S-SD, for a total of 150 simulated align-
ments per protein structure (fig. 1C). The evolutionary pro-
cess, for all the simulation models, was based on the MutSel
framework (Halpern and Bruno 1998). MutSel assumes a
Wright–Fisher population with fixed effective population
size (Ne) and a weak mutation, strong selection regime
such that a mutation is either fixed (or eliminated) before
the introduction of a second mutant into the population.
From population genetics theory, the probability of a muta-
tion y going to fixation in a diploid population currently fixed
at variant x depends on Ne and the relative fitness effect, sxy

¼ fy � fx (Kimura 1962):

Pfix ¼
1� exp ð�2 sxyÞ

1� exp ð�4NesxyÞ
: (1)

For our models, a variant x either represents an entire
sequence (S-SD) or the amino acid at a single site (C-SI and
S-SI). The substitution process is modeled as a continuous-
time Markov chain which is fully specified by the instanta-
neous rate matrix Q with elements:

qxy / 2NelxyPfix: (2)

qxy is the substitution rate from x to y which is equal to the
rate of a novel mutation y occurring in the population,
2Nelxy, and its subsequent rate of fixation, Pfix. Mutations
arise at the DNA-level following the HKY model (Hasegawa
et al. 1985) allowing only single nucleotide changes.

lxy ¼

0; if x and y differ by more than one nucleotide

pj; if x and y differ by a synonymous transversion

jpj; if x and y differ by a synonymous transition

;

8>><
>>:

(3)

where lxy is the mutation rate from codon x to y, j is the
transition–transversion rate ratio, and pj is the stationary
frequency of the substituted nucleotide j for
j 2 fA; C;G; Tg. When generating protein-specific align-
ments, we used the nucleotide frequencies pj and j values
estimated from the corresponding real alignment under in-
ference model M3 (k¼ 3) (table 1). All models assume that
selection acts on the final protein product. The models there-
fore assign all synonymous codons the same fitness.

C-Series Site-Independent Model
Under C-SI, amino acid fitness values were approximated
from the C-series empirical frequency profiles (Quang et al.
2008), commonly used in phylogenetic inference. The C-series
model capture among-site variation in amino acid preferen-
ces (and hence frequencies) by assuming that a site belongs to
one of 20 different frequency profiles. In the MutSel frame-
work, the frequency of amino acid a is related to its fitness fa
by the following relationship pa / pð0Þa exp(2Nefa), where
pð0Þa is the stationary frequency in the absence of selection
pressure (dos Reis 2015). We use this to convert each of the
20 C20 frequency profiles to 20 fitness vectors. Note that the
amino acid frequencies in the absence of selection pressures,
pð0Þa , reflect underlying biases in the mutation process since,
without selection, the stationary frequency of a codon (or
nucleotide triple ijk) is proportional to pipjpk. Then, pð0Þa is
calculated as the sum of the stationary frequencies of synon-
ymous codons corresponding to amino acid a. Because the
three proteins studied here had different mutational param-
eters (table 1), the C20 profiles translated to 20 protein-
specific fitness landscapes. When generating alignments un-
der C-SI, each site was randomly assigned one of the 20
protein-specific fitness vectors. As such, the C-SI model
assumes that sites evolve independently and are identically
distributed.

Stability-Informed Models (S-SI and S-SD)
Alternatively, the stability-informed models (S-SI and S-SD)
define fitness as the proportion of correctly folded proteins at
thermodynamic equilibrium, which is a nonlinear function of
the protein’s folding stability. Details for stability calculations
are provided in the Thermodynamic Model of Protein Folding
section.

Epistasis refers to the dependence of the fitness effect of a
mutation on the background genetic sequence. To account
for epistasis within the MutSel framework, each site was
assigned a vector of amino acid fitness values FhðSÞ ¼ hf h

1 ðSÞ;
. . . ; f h

20ðSÞi where f h
a ðSÞ is the fitness of the protein calcu-

lated using equation (6) given amino acid a at site h and
background sequence S. Throughout the evolution of the
protein, all site-specific fitness vectors were recalculated
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following a nonsynonymous substitution somewhere in the
protein.

To assess if and how epistasis influences substitution rates,
we developed an analogous S-SI model where epistatic effects
on folding stability were marginalized such that the fitness
landscape at a site, Fh, is independent of the background
sequence and is therefore constant across time. To allow
for a direct comparison between alignments generated with
and without epistasis, we used the S-SD simulations to esti-
mate the independent fitness landscapes, Fh (fig. 2). In other
words, let fS1; . . . ; SNg be the extant sequences in an S-SD-
simulated alignment, where N is the number of taxa. We
calculated f h

a as the average fitness value for amino acid a
over sequences fS1; . . . ; SNg (f h

a ¼ ð1=NÞ
PN

t¼1 f h
a ðStÞ). The

average fitness values were used to specify the independent
site-specific fitness vectors, Fh, under S-SI.

Scaling Branch Lengths
In order for branch lengths to have the desired interpre-
tation as the mean number of single nucleotide substitu-
tion per codon site, the substitution rates must be
rescaled. For -SI-generated alignments, we rescaled the
rate matrices in the conventional way by dividing all Qh

by the mean expected rate of change, ð1=nÞ
P

h

P
x � px

qh
xx where n is the number of sites and qh

xx ¼ �
P

y6¼xqh
xy

(Jones et al. 2017). Alternatively, to obtain the appropri-
ate scaling factor for the S-SD alignments, we ran the
simulation for 1,000 substitutions using the Gillespie al-
gorithm (Gillespie 1977). We recorded the overall time T
required for 1,000 substitutions to occur by summing

over the waiting times between substitutions, T ¼
P1;000

t¼0P
hs

h
t where sh is the waiting time until the next substi-

tution event at site h which is exponentially distributed
with mean 1/qh

xx. Branch lengths, b, were then rescaled
such that b ¼ nðT=1; 000Þ. We validated the scaling
methods by comparing the inferred branch lengths
from the simulated alignments to the true generating
branch lengths (mean tree lengths from each set of sim-
ulations are reported in table 2). To avoid nonequilibrium
behavior, each of the protein-specific simulations was ini-
tiated at amino acid sequences with fitness values >0.99
given the respective protein structure. The algorithm
used to explore the sequence space to find sequences
with high fitness values is reported in supplementary ta-
ble S8, Supplementary Material online.

Expected Substitution Rate dN/dS Calculations
The evolutionary rate at a site is commonly defined as the
ratio of nonsynonymous to synonymous substitutions rates
(Nh=Sh) normalized by the ratio of nonsynonymous to syn-
onymous mutations rates (Nh

mut=Sh
mut). Assuming selection

acting at the protein-level such that synonymous codons
have the same fitness value, the rate of fixation of a synony-
mous mutation will be equal to its underlying mutation rate,
Sh ¼ Sh

mut. Therefore, the expected substitution ratio simpli-
fies to dNh=dSh ¼ Nh=Nh

mut. In the traditional MutSel frame-
work (i.e., assuming site-independence as done in simulation
models C-SI and S-SI), the evolutionary rate at a site,

dNh=dSh, can be calculated directly from the site-specific fit-
ness coefficients and the protein-specific mutation rates:

dNh=dSh ¼ Nh

Nh
mut

¼
P

x

P
y2N x

ph
x qh

xyP
x

P
y2N x

ph
xlxy

; (4)

where N x is the set of codons that are nonsynonymous to
codon x and differ by a single nucleotide, qh

xy is the substitu-
tion rate from codon x to codon y calculated using equation
(2), lxy is the mutation rate calculated using equation (3), and
ph

x is the stationary frequency for codon x at site h. We note
that dos Reis (2015) presented an alternative way of calculat-
ing dNh=dSh where the nonsynonymous mutation rate, Nh

mut,
was calculated in reference to the neutral stationary frequen-
cies pð0Þx . Although the interpretation of the dNh=dSh values
differ (as discussed in Jones et al. [2017]), we found that both
formulations resulted in highly comparable rate values
(Pearson correlation coefficient ¼ 0.99, P value <0.05; sup-
plementary fig. S5, Supplementary Material online). The
dNh=dSh rates reported in the main article were calculated
using equation (4).

When epistatic dependencies between sites are modeled
within the MutSel framework, the average substitution rate at
a site can in principle be calculated as

dNh=dSh ¼
P

SNhðSÞP
SNh

mutðSÞ
; (5)

where the sum is over all possible background sequences
S. However, the number of possible sequences is very
large, 20n where n is the length of the protein. For a rel-
atively small protein of length 100, the number of possible
sequences is larger than the estimated number of atoms
in the observable universe. Since the evolution of natural
proteins billions of years ago, natural proteins are evolving
on a relatively small, localized portion of sequence space.
Therefore, although dNh=dSh averaged over all 20n back-
ground sequences is the theoretical rate expectation, it is
impossible to calculate and likely does not reflect the
rates for real proteins. Instead, for S-SD simulations, we
define the evolutionary rate at a site as the mean substi-
tution rate observed throughout the evolution of a pro-
tein over a defined length of time. Specifically, for each S-
SD alignment i (for i ¼ 1; . . . ; 50), we approximate the
rate at a site (dNh

i =dSh
i ) by summing over the extant

sequences fS1; . . . ; SNgi. To address the robustness of
our results to a more extensive sampling of sequences
in the local space, we compared the dNh

i =dSh
i with the

rate dNh
ij=dSh

ij by leaving out the jth sequence. Then, we
calculated the bias and mean-squared error (MSE) as de-
scribed in supplementary equations (S1) and (S2),
Supplementary Material online. We found that the bias
and MSE in dNh=dSh estimates were minor, suggesting
that calculating rates as the average over the extant
sequences has minimal consequences on rate expecta-
tions. Results are discussed in more detail in supplemen-
tary Assessing Sample Size section, Supplementary
Material online, and distributions of bias and MSE are
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plotted in supplementary figure S6, Supplementary
Material online.

Thermodynamic Model of Protein Folding
The stability-informed-generating models estimate the fitness of
a protein sequence based on the biophysical model described in
Goldstein and Pollock (2017). The fitness of an amino acid se-
quence is assumed to be equal to the proportion proteins in the
native (folded) structure at thermodynamic equilibrium. The
method assumes a two-state system (Jackson 1998) where the
protein molecule can occupy one of two possible macrostates,
the folded (F) and unfolded (U) configurations. From thermo-
dynamic theory, the probability of a system occupying a macro-
state i is Pi ¼ e�bEi=q where Ei is the free energy associated with
state i, b ¼ 1=kT (k is the Boltzmann constant and T is the
absolute temperature), and q is the normalizing partition func-
tion (q ¼

P
ie
�bEi ). With only two possible macrostates,

q ¼ e�bEF þ e�bEU . The fitness of a sequence
S ¼ fa1; a2; . . . ; ang (which is equal to the probability of
the sequences being in the folded state) can be calculated as

fitnessðSÞ ¼ PFðSÞ ¼
e�bEFðSÞ

e�bEFðSÞ þ e�bEUðSÞ
: (6)

PFðSÞ can be rewritten in terms of the folding stability, DG, of
the amino acid sequence measured as the difference in ener-
gies between the folded and unfolded states,
DGðSÞ ¼ EFðSÞ � EUðSÞ:

PFðSÞ ¼
e�bDGðSÞ

e�bDGðSÞ þ 1
: (7)

The free energy Ek(S) associated with sequence S in a given
structure k is approximated as the sum of pairwise potentials
for amino acids in contact,

EkðSÞ ¼
X
i< j

eMJðai; ajÞCMi;j
k ; (8)

where eMJ are the contact potentials determined by
Miyazawa and Jernigan (1985), and CMk is the contact matrix
specifying interactions between sites in structure k such that
CMi;j

k ¼ 1 if site i and j are in contact and 0 otherwise. Sites are
considered to be in contact if the Cb atoms of the amino acids
in the observed sequence are within 7 Å of each other. If the
amino acid present is glycine, distance is considered with
reference to the Ca atom.

Given the PDB protein structures, the free energy in the
folded structure EFðSÞ can be directly calculated using equa-
tion (5). EUðSÞ, the free energy of the unfolded macrostate,
can be calculated from thermodynamic theory using
EUðSÞ ¼ �ln ZUðSÞ=b, where ZUðSÞ ¼

PNu
i e�bEiðSÞ and

Nu is the number of unfolded microstates set equal to 3:4n

allowing for�3.4 conformations per residue. The distribution,
qðEÞ, of free energies, E ¼ EUðSÞ, over unfolded states is ap-
proximated by

qðEÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pDE2ðSÞ

p exp
�½EðSÞ � �EðSÞ�2

2DE2ðSÞ (9)

such that

ZU ¼ NU

ð
q½EðSÞ�e�bEðSÞ dE

¼ NU exp
1

2
b2DE2ðSÞ � b�EðSÞ

� �
: (10)

For a sequence S, we obtain estimates of �EðSÞ and DE2

ðSÞ by using equation (8) to calculate the free energies in a
predefined set of 55 alternative structures (PDB codes
reported in supplementary table S9, Supplementary
Material online). With the approximations of EUðSÞ and
EFðSÞ, the stability of a sequence can be expressed as

DGðSÞ ¼ EFðSÞ � EUðSÞ; (11)

¼ EFðSÞ þ b�1 ln ZUðSÞ; (12)

¼ EFðSÞ � �EðSÞ þ 1

2
bDE2ðSÞ þ b�1 ln NU; (13)

which is then used to calculate the fitness of an amino acid
sequence S using equation (6).

Maximum Likelihood Inference of Selection Pressure
M-Series Models
The M-series models assume a time-reversible, stationary,
continuous-time Markov chain where the instantaneous sub-
stitution rate matrix A defines the rate of substitution be-
tween codon x and y as

axy /

0; if x and y differ by more than one nucleotide

pj; if x and y differ by a synonymous transversion

jpj; if x and y differ by a synonymous transition

xpj; if x and y differ by a nonsynonymous transversion

xjpj; if x and y differ by a nonsynonymous transition

:

8>>>>>>>><
>>>>>>>>:

(14)

j is the transition-to-transversion rate ratio, pj is the
stationary frequency of the target nucleotide j, and x is
the nonsynonymous to synonymous rate ratio. This
describes MG (Muse and Gaut 1994) parameterization of
M0, the simplest M-series model, with a single rate param-
eter estimated for all sites in the alignment. To account for
variation in selection pressure across sites, M3 (k) extends
M0 by allowing for k discrete number of rate categories,
each with a rate parameter xk and corresponding propor-
tion of sites pk. M0 is analogous to M3 (k¼ 1). The M3 (k)
versus M3 (kþ 1) likelihood ratio test was used to deter-
mine the appropriate number of rate categories for each
alignment.

CLM3
To test for variation in substitution rate across time, we used
the covarion-like CLM3 as implemented by Jones et al. (2017)
which assumes that the substitution process switches over
time between one with an x ¼ x1 and another with
x ¼ x2. The switching and substitution processes can be
modeled as a two-dimensional Markov chain (X, Y) where
X is the current codon and Y indicates the substitution
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process, 1 or 2. Ordering the possible states as (1,1), (2,1), . . .,
the rate matrix is

A ¼ 1

r1

A1 0

0 A2

 !
þ d

r2

�p2I p2I

p1I �p1I

 !
; ; (15)

where A1 and A2 are the substitution rate matrices con-
structed using equation (14) with x1 and x2, respectively.
p1 and p2 are the expected proportion of time a site evolves
under the respective x, I is the identity matrix, and d denotes
the rate of change between selection regimes. r1 and r2 are
scaling parameters such that time is measured as the
expected number of single nucleotide changes per codon
site and d is the expected number of switches per unit
time. The model contrast M3 (k¼ 2) versus CLM3 provides
a likelihood ratio test for evidence of switching between rate
categories x1 and x2 across the tree.

BUSTED
The branch-site unrestricted statistical test for episodic diver-
sification, BUSTED (Murrell et al. 2015), is based on the BS-REL
framework (Kosakovsky Pond et al. 2011) allowing for varia-
tions in rates across sites and branches. Specifically, BUSTED
estimates three rate categories (x1 	 x2 	 x3) where at
each branch in the tree, a site belongs to one of the three x
categories. The model also estimates proportions p1 and p2

(p3 ¼ 1� p1 � p2) shared across sites. If there is evidence for
positive selection (x3 > 1), then a likelihood ratio test of
BUSTED with x3 constrained to be <1 against an uncon-
strained BUSTED is conducted.

Code and Data Availability
Real and simulated alignments, as well as the code used to
generate, analyze, and plot, have been uploaded to GitHub
(https://github.com/noory3/Consequences-of-stability-in-
duced-epistasis, last accessed July 16, 2020.)

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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