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Abstract

Amino acid preferences vary across sites and time. While variation across sites

is widely accepted, the extent and frequency of temporal shifts are contentious.

Our understanding of the drivers of amino acid preference change is incom-

plete: To what extent are temporal shifts driven by adaptive versus non-

adaptive evolutionary processes? We review phenomena that cause

preferences to vary (e.g., evolutionary Stokes shift, contingency, and entrench-

ment) and clarify how they differ. To determine the extent and prevalence of

shifted preferences, we review experimental and theoretical studies. Analyses

of natural sequence alignments often detect decreases in homoplasy (conver-

gence and reversions) rates, and variation in replacement rates with time—
signals that are consistent with temporally changing preferences. While

approaches inferring shifts in preferences from patterns in natural alignments

are valuable, they are indirect since multiple mechanisms (both adaptive and

nonadaptive) could lead to the observed signal. Alternatively, site-directed

mutagenesis experiments allow for a more direct assessment of shifted prefer-

ences. They corroborate evidence from multiple sequence alignments, reveal-

ing that the preference for an amino acid at a site varies depending on the

background sequence. However, shifts in preferences are usually minor in

magnitude and sites with significantly shifted preferences are low in fre-

quency. The small yet consistent perturbations in preferences could, neverthe-

less, jeopardize the accuracy of inference procedures, which assume constant

preferences. We conclude by discussing if and how such shifts in preferences

might influence widely used time-homogenous inference procedures and

potential ways to mitigate such effects.
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1 | INTRODUCTION

Protein evolution is complex, leaving confounding signals
in natural sequences. An evolutionary biologist interested
in understanding the evolutionary history of a

population, species, or protein must investigate these pat-
terns and decipher their likely causes: Is the observed sig-
nal evidence of adaptive evolution, or could it have
arisen by nonadaptive processes? To address these ques-
tions, we must first have a rigorous understanding of the
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patterns emerging from the interplay of random genetic
drift and selection to maintain protein function, but in
the absence of adaptive processes. To this end, we review
nonadaptive evolutionary phenomena and their identifi-
able footprints in natural sequences.

The space of possible protein sequences is vast. For
an average-sized protein of length 300, the number of
possible sequences (20300) exceeds the number of atoms
in the observable universe (1082). This combinatorial
explosion prohibits our ability to fully characterize the
sequence-to-sequence (S2S) fitness landscape on which a
protein evolves. A more tractable approach is to define
the fitness landscape at an individual site in the protein.
The site-specific fitness landscape is fully defined by a vec-
tor of length 20 describing the fitness of the mutant pro-
tein created by placing each amino acid at the site given
a particular background sequence S, where f h Sð Þ¼
f h1 Sð Þ,…, f h20 Sð Þ� �

defines the fitness landscape at a site
h.
1 From fitness landscapes, we can estimate site-specific

propensity landscapes. Propensity can be defined as the
expected frequency with which an amino acid occurs at a
site,2 or the fraction of sequences at thermodynamic equi-
librium carrying that particular mutation.3 The propen-
sity for an amino acid is related to its fitness by

πha Sð Þ¼ π 0ð Þ
a e2Nef

h
a Sð Þ

.X
x
π 0ð Þ
x e2Nef

h
x Sð Þ ð1Þ

where Ne is the effective population size and π 0ð Þ
a is the

expected frequency of amino acid a in the absence of
selection.4 In this review, we use the more general term
site-specific preference landscape to describe the relative
preferences for amino acids, based on any of the above
definitions. Preference landscapes are often normalized
so that the sum of all amino acid preferences is equal to
one and are usually represented using a heatmap,1 a
sequence-logo plot,5 or a barplot6 (Figure 1).

Proteins evolve with various biophysical and evolu-
tionary constraints on their structures and functions.
Such selective constraints manifest as differences in

preference landscapes among sites and across time. Spa-
tial, or among-site, variability has been extensively stud-
ied revealing commonly observed patterns.7 Buried sites
often prefer hydrophobic residues, while surface
sites have a higher affinity for hydrophilic amino acids.
In addition, preference landscapes at surface sites are
usually more uniform, with many residues having similar
preferences, than at buried sites, where only a small
number of amino acids have high preferences.8 Failing to
account for such spatial variability can jeopardize the
accuracy of inference procedures. As a result, various
inference methodologies accommodate differences in fre-
quency profiles across sites.9 Temporal, or across-time,
variability in preference landscapes is comparatively less
understood. This has lead to the interpretation of tempo-
ral rate shifts as evidence of adaptive evolution10,11; how-
ever, the role of nonadaptive processes, such as neutral
evolution in the presence of epistatic interactions
between sites, in changing preferences and rates is
gaining appreciation.3,12,13

We begin by reviewing various nonadaptive phenom-
ena that give rise to temporal shifts in preferences. Then,
we discuss evidence for shifted preferences gleaned
through analyses of natural sequence alignments. The
observed levels of convergence rates, reversion rates, and
replacement rates are broadly consistent with non-
adaptive evolution. However, this evidence is inferential
and indirect—other mechanisms, which we may not yet
appreciate may be the ultimate causes of such signals. To
more directly quantify the magnitude and prevalence of
shifted landscapes, we discuss results from site-directed
mutagenesis experiments. The conclusion from these
datasets is that amino acid preferences shift over time.
However, nonadaptive shifts are usually minor in magni-
tude and low in frequency. Nevertheless, such minor yet
consistent perturbation in preference landscapes lead to
detectable variations in rates across time.8 We end by dis-
cussing the consequence these shifts might have on
widely-used inference procedures and potential ways to
mitigate their effects.

FIGURE 1 Different

representations of site-specific

preferences. In the heatmap

representation, darker shades imply

higher preference. In the barplot, bar

height represents the preference for the

respective amino acid. In the sequence-

logo (seq-logo) representation, the size of

the letter represents its preference

relative to other amino acids
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2 | CAUSES OF NONADAPTIVE
SHIFTS IN PREFERENCES

Protein evolution is commonly viewed as a walk in
sequence space directed by natural selection, drift, and
mutations. This was intuitively summarized by John
Maynard Smith, where he used a word game as an anal-
ogy of protein evolution.14 Starting with a meaningful
word, the objective is to, at each turn, change one letter
to yield a different meaningful word. His example trajec-
tory was WORD!WORE!GORE!GONE!GENE.
Meaning, in this case, is defined as any English word and
is therefore binary (a word is either meaningful or not).
Despite its simplicity, Maynard Smith's word game anal-
ogy illuminates various salient evolutionary dynamics
(Figure 2). Relevant to this review, we will use it to illus-
trate how adaptive and nonadaptive processes can lead to
similar dynamics for site-specific landscapes.

Analogous to a site-specific landscape, let us define a
position-specific landscape as a 26-element vector for
each letter in the English alphabet. Each letter is
assigned a value of zero if it does not produce a meaning-
ful word in the context of the characters present at the
other positions and is assigned a value of one otherwise.
A change in the background sequence from -ORE to
-ONE will cause a shift in the first position fitness land-
scape. Letters (such as W) that produced meaningful
words in the previous background (e.g., WORE) are no
longer meaningful in a new background (e.g., WONE).
Similarly, letters that were nonviable may become per-
missible (e.g., DORE versus DONE). In this way, the
position-specific landscape is dependent on the back-
ground sequence. In proteins, site-specific preference
landscapes follow similar dynamics—such context-
dependence is referred to as epistasis.

It is important to differentiate between shifts in S2S
landscapes and shifts in site-specific landscapes. A
change in the protein's environment or function will lead
to a shift in the ordering of preferred sequences and
hence a shift in the S2S landscape. Such a shift is analo-
gous to a change in the definition of a meaningful word
(e.g., if Spanish rather than English words are considered
meaningful). The evolutionary response to a shift in the
S2S landscape is often considered adaptive with an excess
of beneficial substitutions compared to neutral or delete-
rious fixations. Alternatively, site-specific fitness land-
scapes can change solely due to epistasis in the absence
of any external change. In this scenario, the proportions
of beneficial and deleterious (fixed by random genetic
drift) substitutions remain equal at equilibrium.15 As
such, changes in site-specific landscapes are often consid-
ered nonadaptive when the S2S landscape is unchanged.
Here, we will refer to adaptive shifts as changes in site-
specific fitness landscapes in conjunction with a shift in
the S2S landscape. Alternatively, nonadaptive shifts con-
stitute changes in site-specific landscapes caused by the
interplay of mutations, drift, and selection on a fixed S2S
landscape.

For most proteins, a prerequisite to proper biological
functioning is correct folding into a native structure in
which the protein is sufficiently stable. As such, many
authors have investigated the level of nonadaptive prefer-
ence shifts in silico by modeling stability-mediated epista-
sis and found that amino acid preferences changed over
time.3,8,13 In particular, Pollock et al.3 observed a ten-
dency for the preference for a resident, recently
substituted amino acid to increase through adjustments
at other sites in the protein. They refer to this as an evolu-
tionary Stokes shift, analogous to the spectroscopy effect
known as the Stokes shift in which a molecule receives a

FIGURE 2 Depicting

epistatic dynamics using

Maynard Smith's word game

analogy of protein evolution.14

The fitness landscape at the first

letter position changes as letters

at other positions change.

Fitness is binary: a word is either

meaningful or not. These

dynamics are akin to epistatic

dynamics in protein evolution

where site-specific fitness

landscapes depend on the

residues present at other sites in

the protein
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quantum of energy, moves to a higher energy state, and
adjusts to the new state by emitting a smaller quantum of
energy than was first absorbed. More recently, evidence
for the opposite trend, where the preference for the resi-
dent amino acid decreases over time, was observed.2 This
phenomenon was dubbed as the evolutionary anti-Stokes
shift. Using a different stability model, Shah et al.13

observed similar trends where substitutions were usually
contingent on prior substitutions that increased their fixa-
tion probability, and were subsequently entrenched,
becoming increasingly deleterious to revert over time.

While entrenchment and evolutionary Stokes shifts
are sometimes used interchangeably,16–18 they are related
yet distinct phenomena. Briefly, a substitution may be
entrenched “by-any-means” (adaptive or nonadaptive);
whereas an evolutionary Stokes shift refers to the
increase in preference of a residue by nonadaptive
stability-mediated effects. An evolutionary Stokes shift
may lead to an entrenched allele; however, not all
entrenched alleles result from an evolutionary Stokes
shift. Similarly, the notion of contingency and evolution-
ary anti-Stokes shifts are related yet not synonymous.

To illustrate their differences, consider an adaptive epi-
sode where a protein was evolving in the context of Envi-
ronment A when an external change occurs (Environment
B) with a shift in the S2S landscape and accompanying
changes in the site-specific landscapes. Let us consider the
dynamics at a focal site. In Environment A, amino acid

alanine (one-letter code A) was the most preferred residue
at a site (Figure 3). In Environment B, the site's prefer-
ences change such that valine (one-letter code V) is now
the most preferred residue. Assuming that a mutation to a
codon specifying V arises at this site, positive selection will
then likely lead to its fixation. The substitution to V is
therefore contingent on the environmental change that
increased its favorability. Once on (or near) the new land-
scape peak, mutations away from amino acid V will be
purged by purifying selection. The beneficial effects of sub-
sequent mutations at other sites may depend on the pres-
ence of V as part of the genetic background. As such,
substitution away from V may become increasingly delete-
rious, leading to a degree of entrenchment. In this way, a
residue may be contingent and subsequently entrenched
through an adaptive process.

Alternatively, a substitution may be contingent on or
become entrenched by nonadaptive processes. Suppose
that, instead of an environmental change, a mutation is
fixed by drift at another site in the protein, changing the
preference landscape at the site of interest. Such a shift in
the landscape could increase the preference for alanine
(an evolutionary Stokes shift) or decrease it (an evolu-
tionary anti-Stokes shift). Given an increase in the prefer-
ence for A, mutations away from A are unlikely to be
fixed leading to its entrenchment. Alternatively, if the
landscape shift resulted in a decrease in the preference of
the resident amino acid such that another amino acid is

FIGURE 3 Shifts in amino acid preferences due to adaptive and nonadaptive processes. Suppose a change occurs in the protein's

environment (e.g., a change in an interacting protein or a ligand; depicted by the red circle or green triangle), then the landscape shifts from

having a strong preference for amino acid alanine (one-letter code A), to strongly preferring valine (one-letter code V). Nonadaptive

evolution can also cause shifts in preferences. Following a substitution at another position in the protein (depicted with an X), the fitness

landscape at a focal site could increase the preference for A or could change the ordering of amino acid preferences such that V is the most

preferred residue. Evolutionary Stokes and anti-Stokes shifts are gradual phenomena that could in the long run lead to these example

landscapes

2012 YOUSSEF ET AL.
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the fittest at the site (e.g., V, Figure 3), then the subse-
quent fixation of a mutation encoding V is contingent on
the change in the background sequence. These examples
offer snap-shots of different preference landscapes. In
natural protein evolution, these processes are dynamic
and gradual over long periods.3

Shifted preferences can have significant consequences
for protein evolution. Dobzhansky–Muller incompatibili-
ties, where a mutation is neutral (or beneficial) in one
protein but is pathogenic in a homologous protein, high-
light the potential significance of shifted preferences on
speciation.19 Furthermore, entrenched substitutions play
a significant role in maintaining molecular complexes.20

It is, therefore, crucial to understand the drivers of shifts
in preferences. The aim in this review is an attempt to
quantify the magnitudes and frequencies of nonadaptive
shifts in amino acid preferences.

3 | EVIDENCE OF PREFERENCE
SHIFTS FROM MULTIPLE
SEQUENCE ALIGNMENTS

A challenge with estimating shifts in preferences is that
they are not directly observable in extant sequences.
However, models which permit variation in site-specific
preferences make explicit predictions that can be vali-
dated or refuted by patterns in natural alignments. Anal-
ysis of natural proteins often reveals evidence for
temporal variation in replacement rates and homoplasy
rates (reversions, convergence, and parallelism). Are
these patterns explainable by nonadaptive processes, or
are they the result of adaptive evolution? As reviewed
below, in most instances, the observed patterns are con-
sistent with predictions from nonadaptive epistatic
models.

3.1 | Convergence rates

Convergence refers to the evolutionary phenomenon
whereby similar traits emerge independently in multiple
lineages. Convergence may occur at the phenotypic level,
such as the origins of wings in bats and birds,21 or echolo-
cation in bats and toothed whales.22 Phenotypic conver-
gence is commonly viewed as evidence of adaptations of
different lineages to similar environmental challenges.23

Alternatively, molecular convergence, the emergence of
identical states (nucleotide, codon, or amino acid) in two
independent lineages, is not convincing evidence of adap-
tation since this could happen by chance owing to the
limited number of permissable states at a site (four nucle-
otides, 61 codons, or 20 amino acids). Independent

changes from the same ancestral state to the same
derived state, are convergent substitutions that transpired
in parallel (Figure 4).

Evidence of convergent substitutions abounds.22,24–28

An adaptive explanation would suggest that convergent
substitutions are due to similar selection pressures in dif-
ferent taxa. For example, Parker et al.22 compared
22 mammalian genome sequences (encoding of 2,326
orthologous proteins) and reported a high number of
convergent substitutions. They concluded that adaptive
molecular convergence is widespread and explains the
independent evolution of echolocation in bats and
whales. However, their conclusions were challenged by
two subsequent studies which reanalyzed their (and addi-
tional) data and found that convergence levels between
bats and toothed whales are no greater than the levels of
molecular convergence between bats and cows.24,25 These
studies highlight that rigorous assessments of the preva-
lence of adaptive convergence require properly formu-
lated null models. Such null models allow us to assess
whether it is necessary to invoke adaptive processes to
explain observed patterns of substitution.

The simplest model for sequence evolution assumes
equal substitution rates between states. This corresponds
to the original Jukes and Cantor29 model when describ-
ing substitutions between nucleotide states. When
applied to amino acids, it is referred to as the Poisson
model, assuming that all amino acids have the same fit-
ness effect so that site-specific landscapes are uniform at
all sites and are constant across time. The Poisson model
predicts a relatively constant and low level of conver-
gence rates as proteins diverge. However, evidence of
convergence in natural datasets often exceeds the levels
of convergences predicted by the Poisson model, and the
level of convergence in natural alignments usually
decreases as sequences diverge. Therefore, using the
Poisson model as a null model, one might inaccurately
reject the null in favor of an adaptive explanation. How-
ever, models which account for differences in rates of

FIGURE 4 Examples of molecular homoplasy. Convergence

refers to substitutions at independent lineages from different

ancestral states to the same derived state. Parallelism refers to

independent substitutions from the same ancestral state to the

same derived state. Reversion refers to a change from a derived

state back to an ancestral state

YOUSSEF ET AL. 2013
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exchange among amino acids (for example, WAG30) and
models that allow for variability across sites (for example,
MutSel31) predict higher levels of convergence than the
Poisson model, and declining levels with time. Nonethe-
less, rates of convergence inferred from natural align-
ments exceed the levels predicted by these heterogeneous
models. A limitation of these models is that they do not
account for epistasis. Various studies have independently
shown that accounting for epistatic interactions leads to
patterns and levels of convergence rates in line with
observations in natural data.26,27,32 In particular, their
results highlight that understanding substitution patterns
under epistatic models are imperative for accurately
detecting adaptive evolution. In Box 1, we review two
datasets with declining convergence rates. In both
datasets, the observed patterns are consistent with non-
adaptive epistatic dynamics.

Why do convergence levels decrease over time under
epistatic models? To illustrate this, let us again consider
Maynard Smith's word game analogy. The first position
fitness landscapes are more similar when the background
sequences have fewer differences (e.g., consider the first
position landscapes given background sequences -ORD
and -ORE; Figure 2). As more differences accumulate
(e.g., -ORD and -ENE), the first position landscapes
become more dissimilar. Similarly, in protein evolution,
as sequences diverge the amino acid preference land-
scapes accumulate more differences.32 As such, amino
acid states that provide high fitness in one homolog may
be unfit in a different background sequence. Neverthe-
less, structural or functional constraints could further
limit variability in amino acid preferences across diverged
proteins. The extent to which such restrictions limit vari-
ability in preferences, however, is still unknown.

BOX 1 Convergence rate: evidence of adaptations or expected under nonadaptive evolution?

Dataset: Thirteen orthologous mitochondrial proteins from 629 vertebrate mitochondrial genomes

• Goldstein et al observed declining levels of convergence rates with time in vertebrate mitochondrial
proteins.26

• To dissect if the levels of convergence are evidence of adaptive evolution or are explainable by nonadaptive
convergences, they simulated data under two substitution models: the WAG which is site- and time-
homogenous but allows for difference in rates of exchange across sites; and a stability-mediated epistatic
model which accounts for differences among sites and across time.3,30

• They found that the levels of convergence rates in the mitochondrial proteins were highly compatible with
the levels expected under a nonadaptive epistatic model.

Dataset: 5,935 orthologous proteins from 12 fruit fly species

• Zou and Zhang report a large amount of variability in convergence rates across the different pairs of
orthologous proteins. Convergence rates were higher in recently diverged proteins and declined with evolu-
tionary distance.27

• To determine if the convergence levels are due to adaptive or nonadaptive process, they developed various
evolutionary models and compared the expected rates to those observed in the natural proteins.

• The simplest model estimates gene-wide equilibrium amino acid frequencies, which are constant across sites
and time. Based on this model, the observed number of convergences were significantly higher than the null
expectation.

• They developed two additional substitution models both of which account for variation across sites by either
grouping sites into classes with similar amino acid frequencies, or by assigning site-specific equilibrium fre-
quencies. Under both these site-heterogeneous models, the observed convergence rates were significantly
lower than predicted.

• Last, using simulations they showed that the lower rates of convergence in the empirical data compared to
the site-heterogeneous null models is likely due to epistatic interactions.

• In conclusion, they found that the observed amounts of convergence is explainable by nonadaptive models
which account for site- and time-heterogeneous process.

2014 YOUSSEF ET AL.
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3.2 | Reversion rates

Reversion describes a return to an ancestral state during
evolution (Figure 4). Molecular reversions are common
in natural sequences.33–35 More than a century ago,
Muller36,37 hypothesized that epistasis causes reversion
rates to decrease with time. McCandlish et al.38 proved
that involvement in at least one epistatic interaction is
sufficient to cause decreases in reversion rates, and that,
in the absence of epistasis, reversion rates are constant
through time.

Naumenko et al.35 analyzed two datasets of genome-
wide alignments from vertebrates (7,967 genes from 9 spe-
cies) and insects (8,477 genes from 8 species). In both
datasets, they observed decreases in reversion rates as
sequences diverged, consistent with expectations under
epistatic models.38 Epistasis can lead to diminishing rates
of reversion through (1) a nonadaptive increase in fitness
for the derived residue (i.e., an evolutionary Stokes shift),
or (2) a nonadaptive decrease in the fitness of the rep-
laced residue.35 Naumenko et al.35 argued that the second
effect is stronger and that “negative epistatic interaction
with currently absent amino acids” is responsible for
most of the observed declines in reversion rates.

3.3 | Replacement rates

Another signal commonly observed in natural align-
ments is changes in replacement rates over time, or het-
erotachy. Various adaptive and nonadaptive mechanisms
can produce this signal. For example, evolution on a
static site-specific fitness landscape, in the absence of
both epistatic and adaptive processes, can lead to hetero-
tachy.6 On a static landscape, a chance fixation to a sub-
optimal amino acid is followed by a period of positive
selection restoring the site to its optimal state, a process
referred to as nonadaptive shifting balance.6 Alternatively,
heterotachy can also be caused by changes in site-specific
fitness landscapes because of epistasis. Changes at other
positions can lead to a more uniform fitness landscape
having higher substitution rates, or a more rugged land-
scape with fewer opportunities for change.39 Further, het-
erotachy may also occur because of changes in the S2S
landscape resulting from an adaptive episode—the shift
in the S2S landscape is often followed by a period of high
substitution rates as the protein adapts to the new condi-
tions.4,6 Given the diversity of processes that can lead to
heterotachy, accurate inference of the mechanisms at
play in natural sequences is challenging.

Can heterotachy resulting from adaptive versus non-
adaptive evolution be distinguished? Two studies have

recently suggested that nonadaptive and adaptive pro-
cesses cause idiosyncratic variations in replacement
rates.40,41 They hypothesized that epistasis causes a
reduction in replacement rate with time, while adaptive
evolution leads to increases in rates. The reason, they
suggest, is that adaptive shifts in preferences often render
the current state suboptimal for the new conditions. Posi-
tive selection will restore equilibrium through the subse-
quent fixations of beneficial nonsynonymous mutations,
leading to an increase in substitution rate following the
landscape shift. In contrast, nonadaptive evolutionary
Stokes shifts increase the favorability of the resident
amino acid. Such an increase in favorability leads to
declining rates of replacement. However, the existence of
an evolutionary anti-Stokes shift—where decreases in
resident amino acid favorability lead to increases
in replacement rates—challenges this claim.2

In this way, both adaptive and nonadaptive processes
may lead to an increase in replacement rates over time.
Nevertheless, we hypothesize that heterotachy caused by
adaptive and nonadaptive processes can be differentiated.
In the absence of adaptations, a balance is expected in
the frequency and magnitude of both evolutionary Stokes
and anti-Stokes shifts.2 This balance suggests that under
nonadaptive evolution, the proportion of sites that experi-
ence increases in replacement rates should be approxi-
mately equal to the proportion experiencing a decrease in
rate. Alternatively, adaptive shifts will lead to an excess
of sites with increased rates compared to the proportion
of sites for which replacement rates decreased. This is
akin to the expectations of the proportions of beneficial
and deleterious substitutions under adaptive and non-
adaptive processes. Under nonadaptive evolution, a bal-
ance exists in the proportions of beneficial and
deleterious substitutions. However, following an adaptive
change, the proportion of beneficial substitutions exceeds
that of deleterious substitutions.4,6 While the dynamics of
landscape shifts under adaptive evolution are yet to be
thoroughly investigated, we suspect that adaptive epi-
sodes will analogously lead to an excess in the proportion
of sites undergoing increases in substitution rates relative
to the proportion of rate-decreasing sites.

We summarize the results from three recent studies
investigating changes in replacement rates in Table 1. In
the reported datasets, the number of rate accelerating or
decelerating sites is comparable—except for the hemag-
glutinin H3 subtype protein analysis in which a higher
number of accelerating sites was observed (12 rate accel-
erating sites and only four decelerating sites). The sites
with the largest increase in replacement rates were exper-
imentally shown to affect antigenic properties.40 There-
fore, the observed increase in rates in the H3 protein may

YOUSSEF ET AL. 2015
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be a true signal of adaptive evolution. Nevertheless, the
similar numbers of accelerating and decelerating sites in
all other proteins are in line with the expectations from
nonadaptive epistatic models.2 Note, however, that the
results presented in Table 1 are from a relatively narrow
range of proteins, making it difficult to draw general con-
clusions. Future work establishing the differences and
similarities in variability of replacement rates due to
adaptive versus nonadaptive processes is warranted.

4 | EXPERIMENTAL EVIDENCE
OF SHIFTS IN PREFERENCES

While the patterns discussed above—decreases in homo-
plasy rates with divergence levels, and patterns of
heterotachy—are consistent with temporally varying
preferences, they could have arisen by nonepistatic
mechanisms. For example, inaccurate tree inference
could lead to diminishing rates of convergence,28 or non-
adaptive shifting balance could lead to the observed het-
erotachy.6 A more direct approach for inferring
preference shifts driven by epistasis is to compare muta-
tional effects across background sequences. If variations
in preferences due to epistasis are minor, then a mutation
should have a similar phenotypic effect regardless of the
background sequence. Alternatively, if preferences
depend heavily on sequence-context, then mutational
effects will vary across different background sequences.
Until recently, experimental methods were restricted in
the number of mutations they can introduce.43 Most
studies performed one of three types of pairwise amino
acid replacements (Figure 5): (a) Forward mutations by
replacing the residue in an ancestral protein with a
derived state; (b) Backward mutations which introduce
an ancestral state into an extant protein; and
(c) Exchange mutations by replacing the resident amino
acid in one protein with the resident residue in an
orthologous protein.

4.1 | Effects on stability

Protein stability is a holistic property determined by all
residues in the polypeptide, the three dimensional configu-
ration, and the physicochemical environment. Neverthe-
less, under the same environmental conditions, a
stabilizing mutation in one sequence may be destabilizing
in another. To investigate the dependence of the stability
effect of a mutation on the background protein sequence,
Ashenberg et al.44 introduced the same mutations into a
series of diverged homologs of the influenza nucleoprotein
(NP). Specifically, they separately introduced six mutations
(I186V, V239M, L259S, A280V, H334N, and G384R) into
four NP homologs (Brisbane/2007, Aichi/1968, Califor-
nia/2009, and bat/2009). The level of sequence divergence
relative to the Brisbane/2007 sequence is 8% with
Aichi/1968, 10% with California/2009, and 28% with
bat/2009. They observed that stability effects of mutations
were conserved across background sequences: only a sin-
gle mutation induced a substantial shift in stability effects
(A280V). The substitution from A!V at site 280 was sta-
bilizing in the context of the Brisbane/2007, Aichi/1968,
and California/2009 sequences, but was destabilizing in
bat/2009 NP. Analysis of their data revealed that the stan-
dard deviation in mutational effects on melting tempera-
ture across background sequences was 0.86�C, on
average. Furthermore, the stability effects of mutations in
the context of different homologous proteins were signifi-
cantly correlated. However, correlations decreased as
sequence divergence increased: the correlation in stability
effects of mutations between Brisbane/2007 and
Aichi/1968 (8% sequence divergence) was .90, falling to
.89 in California/2009 (10% sequence divergence), and .82
in bat/2009 (28% sequence divergence).

To assess how stability effects of mutations change
over time, Risso et al.45 performed forward and backward
substitutions between extant and ancestral reconstruc-
tions of thioredoxin proteins. Specifically, they assayed
stability effects in the context of the extant Escherichia

TABLE 1 Number of rate accelerating sites is often equal to the number of rate decelerating sites, inline with expectations from

nonadaptive epistatic models

References Dataset
Rate
increases

Rate
decreases

Total number
of alleles

Popova et al.40 H1 proteins from 1,613 strains 0 2 83

N1 proteins from 2,015 strains 0 0 82

H3 proteins from 1,832 strains 12 4 117

N2 proteins from 1,996 strains 8 5 93

Stolyarova et al.41 Five mitochondrial genes across
3,557 metazoan species

28 21 42,637

Gelbart and Stern42 Nine proteins across 126 HIV-1/SIV strains 134 137 5,902
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coli protein and a “resurrected” protein present in the last
bacterial common ancestor (LBCA). These proteins differ
at 44% of sites. They introduced 21 mutations of the types
E$D, I $ V into both background sequences and
assayed their effect on stability. The stability effects in
the LBCA and E. coli thioredoxin proteins were strongly
correlated (Pearson correlation coefficient of .89). Only
2 of the 21 mutations were stabilizing in one protein and
destabilizing in the other. In general, stability effects of
all mutations considered were within the range of
±1 kcal/mol. These results suggest that stability effects
among biochemically similar amino acids (E and D, V
and I) are conserved over long evolutionary time scales
(approximately 4 billion years). To investigate the gener-
alizability of this observation to biochemically dissimilar
mutations, Risso et al.45 introduced L $ K mutations
across a series of ancestral thioredoxin proteins, and T $
M mutations across ancestral β� lactamases. Variability
in stability effects was more pronounced in the L $ K
and T $ M mutations than in the E $ D and V $ I
mutations. Nevertheless, the most energetically preferred
amino acid at a site remained the same in the extant and
ancestral proteins.

The experimental studies reviewed above investigated
the stability effects of a limited number of mutations.
Alternatively, simulations of stability-constrained evolu-
tion allow for a more comprehensive assessment of stabil-
ity effects across a wide range of background
sequences.3,13 Shah et al.13 simulated the evolution of the
lysine-arginine-ornithine-binding periplasmic protein
(argT) using the force-field approach FoldX to estimate
stability. They performed forward and backward muta-
tions in silico and assayed the stability effects across all
background sequences. They observed that variability in
stability effects was common in frequency, yet minor in
magnitudes. On average, stability effects were within

0:8 kcal/mol. In summary, theoretical and experimental
investigations reveal that stability effects of mutations are
conserved across background sequences, consistent with
the expectation that fitness effects are often nearly neu-
tral at mutation-selection-drift equilibrium.46,47

4.2 | Effects on function

The previous results suggest that stability effects of muta-
tions are conserved across diverged sequences. Are func-
tional effects of mutations similarly conserved, or is
protein function highly attuned to the background
sequence such that functional effects of mutations differ
substantially across background sequences?

Lunzer et al.48 were amongst the first to investigate
the functional effects of mutations in orthologous pro-
teins. They individually introduced 168 mutations into
the wild-type E. coli isopropyl malate dehydrogenase
(IMDH) protein and assayed their impact on enzyme per-
formance (kcat=Km). At each site, they performed
exchange mutations with the resident amino acids pre-
sent in the Pseudomonas aeruginosa IMDH homolog. The
vast majority of single mutant enzymes (104/168) per-
formed similarly to the wild-type IMDH proteins,
suggesting that functional effects of mutations are
conserved.

Emlaw et al.49 compared the effects of mutations on
single-channel conductance using human muscle-type
acetylcholine receptor (AChR) and an ancestral AChR
(the AChR present in the last common ancestor between
humans and cartilaginous fish). The proteins differed at
36% of sites. At two preselected sites where the resident
amino acids differed between the two proteins (sites
2 and 6), they performed backward substitutions, placing
the ancestral amino acids into the human AChR

FIGURE 5 Diagram representing different mutation experiments. Forward substitutions place a derived amino acid into the context of

an ancestral (Anc) sequence. Backward substitutions place an ancestral amino acid in the context of an extant sequence. Exchange

substitutions refer to changing the resident amino acid in one homolog (e.g., E in H1) with the resident amino acid in another (e.g., F in

H2). Forward and backward substitutions are shown in solid lines. Exchange substitutions are shown in dashed lines
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(mutations G2T and F6S). They also performed forward
substitutions, placing the derived amino acids into the
ancestral sequence (mutations T2G and S6F). They also
introduced the double mutants into both the extant and
ancestral proteins. Analysis of their data revealed high
concordance between the effects of the studied mutations
in the different background sequences (Pearson correla-
tion was .90).

Starr et al.50 performed forward and backward
replacements between a heat shock protein 90 (Hsp90)
ATPase domain present in modern Saccharomyces
cerevisiae (ScHsp90) and a reconstructed deep eukaryotic
ancestor, ancAmoHsp90—the reconstructed Hsp90
sequence of the common ancestor of Amorphea, a
eukaryotic supergroup comprised of animals, fungi,
amoebae and other protists (see Reference 51 for taxo-
nomic definition). In particular, their analysis focused on
the N-terminal domain (NTD). The ancestral and extant
NTDs differ at 60 of 221 sites (27% sequence divergence).
They individually introduced each ancestral amino acid
into the extant ScHsp90 protein and each derived state
into ancAmoHsp90. Then, they estimated the fitness of
yeast cells carrying the mutant proteins by measuring the
change in the ratio of a mutant to wildtype frequency
over time. In this way, they surveyed the effects of muta-
tion on both function and stability. Approximately 48% of
derived states reduced fitness when placed in the context
of the ancestral NTD, 32% were neutral, and 20% were
beneficial. When placed in the modern NTD, 92% of
ancestral amino acids were deleterious, 7% were neutral,
and 1% were beneficial. Across all mutations studied,
77% had different impacts on fitness depending on the
background sequence. However, the effects of most
mutations were minor: the average selection coefficient
was �:02, and �:01 for backward and forward substitu-
tion, respectively. (A selection coefficient of .01 means
that the mutation will be effectively neutral if the effec-
tive population size is less than 100.) Note that the rela-
tively small selection coefficient does not imply that
epistasis plays a minor role in protein evolution. Even a
relatively small degree of nonadditivity in the effects of
mutations can have a considerable impact on evolution-
ary processes: epistasis has a strong influence on the
accessibility and probability of evolutionary
trajectories.13,52,53

4.3 | Quantifying the frequency and
magnitude of shifts in preferences using
deep mutational scanning

The previously discussed studies were limited to a small
number of mutations. However, recent advancements,

known collectively as deep mutational scanning (DMS),
allow us to estimate the fitness effect of all single amino
acid mutations at many (or all) sites in a protein.43,54

First, a single-mutant library of proteins is created. The
mutants are then subjected to a selection or screen in
which the frequency of each genotype in the library is
measured using deep sequencing. Fitness can then be
estimated from the frequency measures. One approach is
to evaluate a mutant's frequency relative to the wildtype
over time as a measure of fitness.50 Others have used the
relative frequency of a mutant pre- and post-selection as
a measure of the mutant's fitness.5 More sophisticated
Bayesian approaches, which correct for low sequencing
depth have also been developed (see Reference 5 for a
detailed description of models used to analyze DMS data
and software implementations). While DMS approaches
are a powerful tool for assessing the extent of shifts in
amino acid preferences, the level of experimental noise is
often high. Site-specific landscapes estimated from repli-
cate experiments can have correlation coefficients as low
as .59.55,56

Despite its recency and potential limitations, DMS
methodologies have been used to estimate site-specific fit-
ness landscapes in many proteins in various organisms.
Livesey and Marsh,57 report on the results from 31 publicly
available DMS datasets: 13 from human proteins, 9 from
bacterial proteins, 5 from yeast proteins, and 4 viral pro-
teins. However, only four studies have applied DMS to
homologous proteins.55,58–60 Six datasets from these four
studies are available to compare site-specific preferences
across different background sequences (Table 2). Three
studies were carried out in viruses.55,58,59 The fourth study60

compared site-specific fitness landscapes in orthologous
indole-3-glycerol phosphate synthase (IGPS) proteins pre-
sent in the archaeon Sulfolobus solfataricus (ssIGPS) and in
two bacteria: Thermotoga maritima (TmIGPS) and Thermus
thermophilus (TtIGPS). Collectively, the studies compare
site-specific landscapes across sequences with as little as 6%
and up to 73% sequence divergence.

There are broadly two ways of comparing site-specific
landscapes across different sequences. The first approach
is to calculate correlation coefficients between land-
scapes. This has been done in two ways (Figure 6):
(a) calculate the landscape correlation at homologous
sites, and report the mode of the correlation coefficient
distribution (Rmode; Figure 6a); or (b) concatenate all
landscapes and estimate a single overall correlation coef-
ficient (Roverall; Figure 6b). Chan et al.60 used the first
approach and found that site-specific landscapes were
significantly correlated (with modes ranging from .62 and
.72; Table 2). Alternatively, Bloom and colleagues report
the overall correlation from the second approach: Roverall

ranged from .36 to .72.55,58,59 It is currently unclear if

2018 YOUSSEF ET AL.
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both approaches lead to similar correlation estimates and
hence similar biological conclusions.

To compare the two correlation approaches, Rmode and
Roverall, we reanalyzed the datasets from Chan et al.60 and
Haddox et al.55 using both methods. Note that, Haddox
et al.55 conducted three replicate experiments for each
homologous protein (BF520 and BG505). It is valuable to
obtain the across-replicate average landscapes prior to
obtaining correlations (see Box 2 for more details). We
report the correlations between site-specific landscapes
given the different background sequences in Figure 6c,d.
It is clear from this analysis that Rmode and Roverall can dif-
fer; specifically, Rmode >Roverall in the four datasets. The
largest difference is observed in the TmIGPS—TtIGPS
comparison where Rmode and Roverall differ by 0.20.
Because fitness profiles can be expected to vary substan-
tially over sites, conditioning on a site by reporting site-
specific correlations may be more statistically robust and
is more informative regarding the dynamics at a site. For
example, it is evident from the site-specific correlation
distributions that most landscapes correlate strongly
(R > .5). However, some sites have landscapes that are
negatively correlated. A negative correlation of the pref-
erence landscape given different genetic backgrounds
indicates substantially shifted amino acid preferences
and suggests differing functional or structural constraints
in the respective proteins. For these reasons, considering
outliers in the entire distribution of site-wise correlations
may be preferable for inferring specific locations where
preferences have shifted substantially.

In order to accurately detect shifts in preferences using
DMS data we must account for high amounts of experi-
mental noise. Therefore, a second approach for quantify-
ing shifts in amino acid preferences compares the distance
between two landscapes using the Jensen-Shannon dis-
tance metric58 (see Box 3 for detailed discussion). Briefly,
the distance is equal to zero when amino acid preferences
are identical, and is one if the preferences are dissimilar.
The distance approach accounts for the level of variability
in site-specific landscapes due to experimental noise by
estimating the average root-mean-square distance within
replicate experiments (RMSDwithin). Similarly, the distance
between site-specific landscapes in homologs is calcu-
lated (RMSDbetween). The magnitude of shift at a site
(RMSDcorrected) is then calculated as the difference
between RMSDbetween and RMSDwithin. In summary, the
RMSDcorrected value at each site provides a measure of the
magnitude of the shift in preference while calibrating for
experimental noise.

The RMSDcorrected approach can be used to quantify
the prevalence of significantly shifted sites. To do this, a
null distribution of RMSDcorrected values is generated
through an exact permutation test by reassigning site-T

A
B
L
E

2
Si
te
-s
pe
ci
fi
c
pr
ef
er
en

ce
la
n
ds
ca
pe
s
es
ti
m
at
ed

ac
ro
ss

di
ve
rg
ed

ba
ck
gr
ou

n
d
se
qu

en
ce
s
ar
e
po

si
ti
ve
ly

co
rr
el
at
ed

R
ef
er
en

ce
s

O
rg
an

is
m

P
ro
te
in

C
om

p
ar
is
on

Se
q
.l
en

gt
h
a
(#

si
te
sb
)

%
d
iv

C
or
re
la
ti
on

be
tw

ee
n

C
or
re
la
ti
on

w
it
h
in

P
re
va

le
n
ce

D
ou

d
et

al
.5
8

IA
V

N
P

H
1N

1–
H
3N

2
49
7
(4
97
)

6%
.7
8c

.8
3c

2.
8%

(F
D
R
of

0.
05
)

H
ad

do
x
et

al
.5
5

H
IV

en
v

B
F
52
0–
B
G
50
5

83
6
(6
59
)

14
%

.5
7–
.5
8d

.5
9–
.7
8e

4.
6%

(F
D
R
of

0.
01
)

L
ee

et
al
.5
9

IA
V

H
A

H
1N

1–
H
3N

2
56
6
(5
66
)

58
%

.3
6–
.4
7d

.6
9–
.8
2e

–

C
h
an

et
al
.6
0

S.
So

lfa
ta
ri
cu
s
(S
s)

IG
PS

Ss
IG

PS
–T

tI
G
PS

27
1
(8
0)

65
%

.7
2f

.9
4f

–

T
.t
he
rm

op
hi
lu
s
(T
t)

Ss
IG

PS
–T

m
IG

PS
26
7
(8
0)

70
%

.6
2f

T
.m

ar
it
im

a
(T
m
)

T
m
IG

PS
–T

tI
G
PS

27
7
(8
0)

73
%

.6
2f

N
ot
e:
L
is
te
d
ar
e
th
e
Pe

ar
so
n
co
rr
el
at
io
n
s
be
tw

ee
n
la
n
ds
ca
pe
s
w
it
h
in

re
pl
ic
at
e
ex
pe
ri
m
en

ts
(c
or
re
la
ti
on

s
w
it
h
in
),
an

d
co
rr
el
at
io
n
s
be
tw

ee
n
la
n
ds
ca
pe
s
es
ti
m
at
ed

in
di
ff
er
en

t
ba
ck
gr
ou

n
d
se
qu

en
ce
s
(c
or
re
la
ti
on

s
be
tw

ee
n
).
Pr
ev
al
en

ce
is
es
ti
m
at
ed

fr
om

th
e
R
M
SD

co
rr
ec
te
d
ap

pr
oa
ch

.
a P
ai
rw

is
e
al
ig
n
ab
le

si
te
s.

b
N
um

be
r
of

m
ut
at
ed

si
te
s.

c R
ov
er
al
l
be
tw

ee
n
re
pl
ic
at
e-
av
er
ag
ed

si
te
-s
pe
ci
fi
c
la
n
ds
ca
pe
s.
W
it
h
in

re
pl
ic
at
e
co
rr
el
at
io
n
s
ar
e
ba
se
d
on

co
m
pa

ri
so
n
w
it
h
si
te
-s
pe
ci
fi
c
la
n
ds
ca
pe

es
ti
m
at
es

fr
om

a
pr
ev
io
u
s
st
u
dy

.6
1

d
R
an

ge
of

R
ov
er
al
l
ov
er
al
lr
ep
lic
at
e
pa

ir
s
be
tw

ee
n
h
om

ol
og
s.

e R
an

ge
of

R
ov
er
al
l
ov
er
al
lr
ep
lic
at
e
pa

ir
s
w
it
h
in

h
om

ol
og
s.

f R
m
od

e.

YOUSSEF ET AL. 2019

 1469896x, 2021, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pro.4161, W

iley O
nline L

ibrary on [09/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



specific landscapes among the two protein groups. If pref-
erences have not shifted significantly between the two
proteins, then the true distribution of RMSDcorrected

values should be similar to the null distribution. This
method can be used to identify sites for which the null
hypothesis of no shifts is rejected. Note that, permutation
tests can be conservative because they construct a null
distribution from data that may instead support the alter-
native hypothesis. As such, this approach may be suscep-
tible to high false negative rates.

Doud et al.58 performed DMS on two homologs of
influenza A virus (IAV) NPs in the H1N1 and H3N2 viral
strains. The proteins differed at 6% of sites. Using the
RMSDcorrected approach, they found that only a modest
fraction of sites exhibited significant shifts in amino acid
preferences: at a false discovery rate of 0.05, 14 of 497 sites
(2.8%) showed evidence of significantly shifted prefer-
ences. Haddox et al.55 used the same method to quantify
the magnitude and prevalence of shifted preferences
between homologous HIV envelope (env) proteins that
differ at approximately 14% of sites. Only 30 of the
659 sites (4.6%) showed evidence of significantly shifted
preferences (at an FDR of 0.01). Lee et al.59 performed a

similar analysis between homologous hemagglutinin
(HA) proteins present in influenza viruses H1N1 and
H3N2. The proteins were highly diverged, having 58%
sequence divergence. The number of significantly shifted
sites was not reported. However, it is evident from the
distribution of RMSDcorrected (Figure 7c in Lee et al.59)
that a large number of sites had significantly shifted pref-
erences. Also, the magnitude of the shifts was more pro-
nounced than in other DMS studies. For example, the
largest RMSDcorrected reported in Doud et al.58 was 0.45,
whereas RMSDcorrected values were as high as ≈ 0.8
between the hemagglutinin homologs.

A challenge with assessing shifts in preferences using
the correlation approaches is that, while it is clear that
correlations between landscapes inferred from homologs
are lower than correlations from biological replicates, it
is unclear if the observed decreases are statistically signif-
icant. As such, the RMSDcorrected approach has been infor-
mative for inferring significantly shifted preferences.55,58

Nonetheless, a limitation of the RMSDcorrected approach is
that it cannot distinguish between instances where the
order of amino acid preferences has changed versus cases
where there is an intensification (or relaxation) of

FIGURE 6 Different approaches for comparing correlations between site-specific landscapes across different background sequences.

The first approach (a) estimates the correlation between landscapes at homologous sites given different background sequences and reports

the mode of distribution (Rmode). The second approach (b) concatenates all site-specific landscapes and estimates an overall correlation value

(Roverall). (c) Distribution of site-specific correlation values from four DMS experiments. The BF520–BG505 dataset is from Haddox et al.55

The remaining datasets are from Chan et al.60 Percentages in parentheses are the percent sequence divergence between the two proteins.

(d) Reports the values of Rmode and Roverall from the four datasets. Reported correlations for the BF520–BG505 dataset are from site-specific

fitness landscapes averaged over replicate experiments
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selection between sequences. An example of this is pro-
vided in Figure 7. Amino acid alanine (one-letter code A)
is the most preferred residue at site 512 in both homologs
of the env protein.55 However, site 512 is more mutation-
ally tolerant in the context of the BG505 sequence versus
the BF520 background. Conversely, at site 288, there is a
clear shift in the ordering of amino acids. Despite having
different shifted dynamics, the RMSDcorrected approach
estimates a similar degree of shift at sites 288 and 512.
Alternatively, the Pearson correlation between land-
scapes is substantially lower for site 288 (Figure 7),
highlighting that the correlation approach might be more

suitable for identifying sites having different preferred
amino acids given different background sequences.

DMS is a promising tool for quantifying the magni-
tude and prevalence of shifted amino acid preferences.
In addition to the analyses discussed above, data from
DMS can be used to assess multiple additional ques-
tions: How often is a substitution deleterious in one pro-
tein but beneficial in another? How often does the most
preferred amino acid at a site differ across background
sequences? How often are the detected shifts due to a
reordering of the preferred amino acid versus a relaxa-
tion (or intensification) of selection pressure? Answers

BOX 2 Higher correlations when averaging over replicate experiments

Deep mutational scans can display high levels of experimental noise. Therefore, triplicate experiments are usu-
ally conducted for a given protein. Let P and Q be the true site-specific (or concatenated) fitness landscapes
given different background sequences. Then let Pr and Qr be the fitness landscapes estimated from a DMS
experiments r and s such that Pr = P + er and Qs = Q + ds, where er and ds are the measurement errors. If these
are uncorrelated then,

Cov Pr ,Qsð Þ¼Cov P,Qð Þ

but, Var(Pr) = Var(P) + Var(er) and Var(Qs) = Var(Q) + Var(ds). Thus, the correlation for a replicate pair
(r, s) is

Corr Pr ,Qsð Þ¼ Cov Pr ,Qsð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Pð ÞþVar erð Þp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Qð ÞþVar dsð Þp
¼ Cov P,Qð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Pð ÞþVar erð Þp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Qð ÞþVar dsð Þp

≤
Cov P,Qð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Pð Þp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Qð Þp

¼Corr P,Qð Þ

This shows that correlations estimate from replicate pairs of experiments will be less than or equal to the
true correlation. The above argument also holds for across-replicate averaged landscapes P and Q.

Var P
� �¼Var Pð ÞþVar erð Þ=3

Var Q
� �¼Var Qð ÞþVar dsð Þ=3

However, the denominator term, causing the underestimation, is smaller for averaged landscapes. For
example, consider the Haddox et al.55 study, where they performed DMS triplicate experiments for envelope
proteins present in HIV stains BF520 and BG505. The correlations between replicate experiments, Cov(Pr, Qs)
were less than .58. However, the correlation between across-replicate average landscapes was .74.

In summary, it is valuable to average prior to obtaining correlations. If errors in approximating the land-
scapes are uncorrelated, the covariance does not change by averaging but the variance contributions due to
errors in approximation are reduced giving a better approximation to the correlation of interest that one would
obtain had there been no variation over replicates.
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BOX 3 Quantifying shifts in DMS datasets while controlling for experimental noise

DMS methodologies offer a powerful tool for assessing the effect of mutations. However, the level of experimen-
tal noise may be problematic; correlations between identical replicates can be as low as .59, matching correla-
tion coefficients observed across different background sequences.54,55 Therefore, quantifying the extent and
prevalence of shifts in preferences must be calibrated to the observed level s of experimental noise.

Doud et al.58 used the Jensen–Shannon divergence (JSD) to quantify the level of similarity (or dissimilarity)
between the fitness landscapes at homologous sites given different background sequences.58 Let P and Q be the
site-specific fitness landscapes at a site given the background sequences H1 and H2, respectively. Then,

JSDðPjjQÞ¼ 1
2
DðPjjAÞþ1

2
D QjjAð Þ

where A¼ 1
2 PþQð Þ is the average fitness landscape and D(P jj A) = P

i Pi log(Pi/Qi) is the Kullback–Leibler
divergence. Let d P,Qð Þ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

JSD P QjÞjðp
, such that d(P,Q) is a metric of the distance between landscapes P and

Q. The utility of d(P,Q) is that it is symmetric and ranges from 0 (identical distributions) to 1 (dissimilar
distributions).

Replicate experiments yield different landscape estimates. To quantify the level of variability within repli-
cates, calculate the average root-mean-squared distance at a site within replicate experiments:

RMSDwithin ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nP

X
r,s � NP

d Pr ,Psð Þ2
r

þ1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nQ

X
r,s � NQ

d Qr ,Qsð Þ2
s

where Pr is the estimated landscape at a site in replicate r, NP is the set of nonredundant pairwise comparisons
within replicates (e.g., given three replicate experiments, NP = {(1,2), (1,3), (2,3)}), nP is the number of compari-
sons, and the respective definitions for Qr, NQ, and nQ. Then, calculate the root-mean-square distance between
landscapes in different background sequences
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to these questions can be illuminated using data
from DMS.

5 | LIMITATIONS

The studies reviewed above suggest that temporal vari-
ability in amino acid preferences is usually minor in mag-
nitude and low in frequency. However, each of the
methods used for inferring preference shifts has potential
limitations. Detecting variations in rates of homoplasy or
replacement rates in natural alignments are indirect ways
of assessing preference shifts. While theoretical models
suggest that epistasis could result in the observed signal,
other mechanisms may also be at play.28 Alternatively,
DMS approaches allow for a more direct assessment of
site-specific preferences in different background

sequences. These approaches offer snap-shots of prefer-
ence landscapes in the context of different sequences but
tell us little about the trend of change over time. For
example, we cannot use current DMS data to assess if
changes in preference are abrupt or gradual. Neverthe-
less, comparing preference landscapes between ancestral
and extant proteins (as done in Starr et al.50) to track
how preferences change over time is valuable for under-
standing trends in preference shifts.

Ancestral reconstructions of ancient proteins are
widely used in phylogenetics and are of particular impor-
tance for assessing the degree of change in site-specific
preference landscapes over time.45,49,50 Nevertheless, the
models used to infer ancestral character states often
assume stationary amino acid frequencies over time and
across sites, and no changes in S2S landscapes (i.e., no
adaptive change) which may lead to biases in the ancestral
reconstructions.62,63 Thus reconstruction could have some
degrees of systematic error or bias that has an asymmetric
effect on the background sequences that are evaluated. If,
say, 30% of states in an ancestral protein must be
reconstructed, then biases could affect up to 30% of the
ancestral sequence but 0% of the extant sequence within
the various experiment settings. So, when comparing the
effects of changes between ancestral and extant proteins
there could be an asymmetric impact of such biases. The
potential impact on interpretation is further complicated
since reconstruction biases tend to overestimate thermo-
stability of ancestral proteins.62 While the narrow sense
interpretation of the experiments will be correct, they
might not as easily be generalized to the actual ancestors
such as the LBCA. Investigating the mutational effects
across a sample of ancestral sequences with high posterior
probabilities could potentially reveal disparity in prefer-
ence landscape inference, leading to different conclusions
regarding the magnitudes and shifts in amino acid prefer-
ences over time. Nevertheless, results from comparative
analyses of amino acid preferences in extant, homologous
proteins are not subject to the same biases as ancestral
reconstructions.55,58–60 The conclusions from such

RMSDbetween ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nP,Q

X
r,s � NP,Q

d Pr ,Qsð Þ2
s

where NP,Q is the set of nonredundant pairwise comparisons between replicates (e.g., given three replicate
experiments for each background sequence, NP,Q = {(1,1), (1,2), (1,3), (2,1) …, (3,3)}), and nP,Q is the number of
comparisons. The magnitude of preference change after correcting for site-specific noise is calculated as

RMSDcorrected ¼RMSDbetween�RMSDwithin

FIGURE 7 Correlation approach is better at identifying a

reordering of amino acid preferences compared to the RMSDcorrected

approach. Site-specific preference landscapes in homologous

envelope proteins in HIV strains BG505 and BF520. Shown are the

across-replicate average preference landscapes at a site. The

reported shift is the RMSDcorrected values. The reported R value is

the Pearson correlation coefficients between site-specific preference

landscapes. Data obtained from Haddox et al.55 under the Creative

Common Attribution license
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analyses reveal that preferences are often conserved in
homologous proteins, inline with conclusions based on
reconstructed proteins.

Currently, there is limited availability of data from
DMS experiments that can be used to assess shifts in site-
specific preferences. There are only four studies that com-
pared preference landscapes between homologous pro-
tein sequences (Table 2), and only one of these compares
orthologous bacterial and archaeal proteins.60 The
remaining three studies were conducted in viruses, spe-
cifically RNA viruses. The high mutation rates in RNA
viruses may have selected for loosely packed protein
structures, which buffer the deleterious effects of muta-
tions.64 This would suggest that the low levels of
mutational effects observed in these experimental set-
tings may not generalize to nonviral proteins. This has
led to concerns regarding the utility of viral DMS data in
more generally assessing levels of preference shifts.65

However, results from Chan et al.60 corroborate that dras-
tic shifts in preference landscapes are usually rare in non-
viral proteins even at high levels of sequence divergences.
Furthermore, Ferrada66 curated a dataset of 124 pairs of
homologous proteins (sequence divergences ranged from
0 to 100%) and computationally estimated site-specific
landscapes using FoldX. Using the RMSDcorrected

approach, they observed that the number of sites with
significantly shifted preferences increases with sequence
divergence. Nevertheless, even at 100% sequence diver-
gence on average less than 30% of sites had significantly
shifted preferences. This study only modeled the effects
of stability. Natural proteins are affected by additional
structural constraints, beyond just stability, that influence
preferences in ways that are only marginally dependent
on background sequence. Therefore, the percentage of
sites with substantial shifts in preference in natural pro-
teins are likely to be even less than 30%.

6 | CONSEQUENCES OF SHIFTS
FOR TIME-HOMOGENOUS
EVOLUTIONARY MODELS

One way of deducing information about evolutionary
processes is to analyze multiple sequence alignments
with a quantitative model of sequence evolution. Two
widely used classes of evolutionary models are phyloge-
netic models used to infer relationships between taxa and
ω models used to estimate selection intensity. Inference
procedures for either class of models often assume that
the evolutionary process is identical across sites and con-
stant through time. Specifically, most models assume
(a) independent evolution across sites, (b) time-
homogeneous substitution processes, and (c) a common

vector of stationary frequencies; assumptions that are all
violated in the presence of epistasis.

Various amendments have been applied to allow for
heterogeneity (spatial and temporal) in the evolutionary
process in both phylogenetic and ω models. However, due
to the difficulty in tractably modeling co-dependencies
among sites, models are limited in the extent of heteroge-
neity that can be accommodated. In practice, inference
procedures model among-site heterogeneity through a
mixture model with different substitution processes as
classes in the mixture, and can allow for temporal
changes in the substitution process at prespecified bra-
nches along the tree,10,11,67 or using a covarion-like pro-
cess.68–70 There has also been significant development on
site-heterogeneous models informed by protein struc-
ture.71–75 More recently there has been a push toward
using experimentally informed evolutionary models
where site-specific substitution processes are informed by
data from DMS.61,76,77 While these models offer improved
likelihood scores over more traditional approaches, they
are limited in applicability to the currently small number
of proteins for which DMS data is available.

While the challenges associated with allowing for
temporal and spatial heterogeneity place a high barrier
for their widespread incorporation into inference proce-
dures, it is nonetheless of paramount importance to
understand how they may bias our inferences. To this
end, recent studies have advocated for the use of models
of protein evolution with plausible levels of spatial and
temporal heterogeneity as a tool for assessing the accu-
racy of inference in the face of realistic levels of heteroge-
neity.6,8,70,78,79 Simulations of stability-informed models
recapitulate levels of both spatial and temporal heteroge-
neity present in real data.8 They are therefore a powerful
tool for assessing inference accuracy. To this end,
sequences are first generated under a stability-
constrained evolutionary model. The simulated
sequences are then analyzed using traditional inference
procedures. The true parameter values, predicted from
the generating model, are then compared to the inferred
parameters to assess inference accuracy.

Using the procedure outlined above, it is evident that
traditional ω models underestimated levels of among-site
heterogeneity; ω models estimated only 2–4 rate classes
when a much richer distribution of rate classes ( > 100) is
present in the true generating process.8 Nevertheless, the
inferred rates corresponded to the most common substi-
tution rates across sites. Furthermore, inclusion of a
covarion-like component in the substitution model, all-
owing rates at sites to vary over time, fit the data signifi-
cantly better. These results suggest that ω models need
not explicitly include epistatic interactions for reasonable
inference of selection pressure when averaging over time
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and sites, and that allowing for a covarion-like compo-
nent seems to capture temporal heterogeneity in rates
arising due to epistasis.8

The procedure outlined above has not yet been
implemented to assess the sensitivity of phylogenetic
inference to extensive and persistent levels of heterogene-
ity due to nonadaptive stability-constrained epistasis.
However, the literature assessing the accuracy of phylo-
genetic inference in the face of temporal and spatial het-
erogeneity “by-any-means” is vast. Simulations show that
ignoring temporal heterogeneity can induce systematic
errors in phylogenetic inference, including topological
and branch length inaccuracies.80–84 However, it remains
unclear if the level of heterogeneity arising from non-
adaptive epistatic processes is substantial enough to simi-
larly bias our phylogenetic inferences. Assessing the
implications of epistasis on phylogenetic inference is a
fruitful avenue for future research.

In contrast with the relatively minor changes in prefer-
ences over time, differences in amino acid preferences
among sites is substantial.7 Models that accommodate
among-site heterogeneity fit the data significantly better
than site-homogeneous models.77 This leads to the question:
How can site-specific fitness profiles be estimated? There
are currently two approaches for obtaining site-specific fit-
ness landscapes: (a) they can be statistically inferred from
large multiple sequence alignments (e.g., Rodrigue and
Lartillot16), or (b) experimentally obtained from deep muta-
tional scans (e.g., Hilton and Bloom77).

A new approach, informed by developments in the
field of systems biology, might be worth exploring. Vari-
ous computational variant effect predictors (VEPs) have
recently been developed to predict the effects of muta-
tions in a given protein sequence, often for clinical appli-
cations. In a recent study, Livesey and Marsh57 compared
the performance of 46 different computational VEPs to
data obtained from DMS. These VEPs rely on various
structural, evolutionary, and biophysical features (see
Reference 57 for details of the different VEPs). The best
performing VEP was DeepSequence,85 an unsupervised
machine learning approach. DeepSequence had an aver-
age correlation coefficient between predicted and
observed (DMS) landscapes equal to .43 across all human
proteins and .46 across all nonhuman proteins. While
these correlation coefficients are low, it is relevant to note
that the average Pearson correlation between different
DMS studies on the same protein is only .66,57 and corre-
lations between replicate experiments can be as low as
.59.55,56 A noteworthy prerequisite of the DeepSequence
method is that it necessitates the availability of large mul-
tiple sequence alignments. For proteins where a large
alignment is not available, other VEPs that rely on struc-
tural or biophysical features, such as DEOGEN286 and

SNAP2,87 may be preferable. As with any supervised
approach, DEOGEN2 and SNAP2 have potential limita-
tions related to overfitting of the training dataset. Never-
theless, both methods performed well against diverse,
independently curated DMS datasets—from viral,
eukaryotic, and bacterial proteins—highlighting their
potential utility to generally estimate mutational effects.

Site-specific fitness landscapes can be estimated from
VEPs and used to inform evolutionary models. For exam-
ple, site-specific frequency landscapes can be estimated
from the site-specific fitness landscapes and provided to
phylogenetic models, similar to the phylogenetic applica-
tion of DMS data.76,77 Alternatively, fitness values can be
used directly in models of sequence evolution to specify
the rates of substitutions between codons or amino acids.
Bloom61 proposed two heuristic approaches of converting
site-specific fitness landscapes to fixation probabilities.
These approaches were first developed in the context of
DMS data but can be used to estimate fixation probabili-
ties from landscapes predicted from VEPs.

While we do not yet have a complete understanding
of the degree of temporal shifts in most proteins, the
reviewed studies suggest that they are usually minor in
magnitude at most sites and that only a small fraction of
sites have significantly shifted preferences. These consis-
tent yet minor perturbations in preferences have signifi-
cant consequences for sequence evolution13,52,53 and can
lead to variation in rates across time.2 However, most
inference models assume constant preferences. Evidence
is emerging highlighting the value of accounting for tem-
poral heterogeneity in inference procedures using a
covarion-like process (e.g., Jones et al.,70 Lu and
Guindon88). Therefore, allowing for temporal variability
(using a covarion-like component) in addition to allowing
preferences to vary across sites (estimated experimentally
or computationally) might lead to better models of pro-
tein evolution.

7 | CONCLUSIONS

From the foregoing, it is clear that nonadaptive processes
can alter site-specific amino acid preferences. Experimen-
tal studies suggest that at high sequence divergence levels
only a small proportion of sites experience significantly
shifted preferences, while at most sites there is only a
small quantitative perturbation to the observed amino
acid preference.55,58–60 Extensive computational studies
corroborate this conclusion.13,66 Furthermore, pairwise
amino acid exchange mutations between highly divergent
sequences often have only minor differential effects on
fitness,50 function,48,49 and protein stability.44,45 Together
these results suggest that amino acid preferences at most
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sites vary slightly but are usually conserved over long
evolutionary time scales. Nevertheless, the frequent, but
small, changes in amino acid preferences leave an identi-
fiable footprint in natural sequences: decreases in conver-
gence rates,26,27 reversion rates,35,38 and variation in
replacement rates40–42 with time, and can have signifi-
cant implications for protein evolution.13,52,53 While
explicitly including epistatic interactions between all sites
is computationally prohibitive, allowing for temporal var-
iations in substitution processes (using a covarion-like
process) and differences in preferences across sites (deter-
mined computationally or experimentally) are tractable
ways of phenomenologically accounting for epistasis in
inference models. Mutational effects, which appear
inconsequential in experimental or computational set-
tings may be exacerbated in nature. Further investiga-
tions into how nonadaptive processes alter evolutionary
dynamics will be important, not only to better under-
stand how proteins evolve, but also to better identify
adaptive episodes when they occur in natural proteins.
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GLOSSARY
Contingency an increase in the fixation probability of

a mutation due to preceding substitu-
tions at other sites in the protein.

Convergence the emergence of similar traits (pheno-
typic or genotypic) independently in
multiple lineages.

Effective
population
size

a theoretical quantity conceptualized as
the size of an idealized population (hav-
ing an equal number of males and
females, random mating, equal expecta-
tions of offspring for each individual,
and a constant number of breeding
individuals) exhibiting the same inten-
sity of genetic drift as the natural
population.

Entrenchment a decrease in reversion rate due to sub-
sequent substitutions at other sites in
the protein.

Evolutionary
anti-Stokes
shift

a decrease in the propensity for a resi-
dent amino acid due to nonadaptive sta-
bility-mediated effects.

Evolutionary
Stokes shift

an increase in the propensity for a resi-
dent amino acid due to nonadaptive sta-
bility-mediated effects.

Heterotachy temporal variation in replacement rates
through time.

Homoplasy shared trait (phenotypic or genotypic) not
due to presence in a common ancestor.

Homologous shared trait (phenotypic or genotypic)
due to presence in a common ancestor.

Random
genetic drift

fluctuations in gene frequencies due to
random sampling.

Reversions a return to an ancestral state during
evolution.

Selection
coefficient

the selective advantage of a mutant
measured as the difference in fitness
effects of the mutant to wildtype.

ω rate ratio inferred ratio of nonsynonymous to syn-
onymous substitutions.
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