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Abstract

Site-specific amino acid preferences are influenced by the genetic background of the protein. The preferences for resident
amino acids are expected to, on average, increase over time because of replacements at other sites—a nonadaptive
phenomenon referred to as the “evolutionary Stokes shift.” Alternatively, decreases in resident amino acid propensity
have recently been viewed as evidence of adaptations to external environmental changes. Using population genetics
theory and thermodynamic stability constraints, we show that nonadaptive evolution can lead to both positive and
negative shifts in propensities following the fixation of an amino acid, emphasizing that the detection of negative shifts is
not conclusive evidence of adaptation. By examining propensity shifts from when an amino acid is first accepted at a site
until it is subsequently replaced, we find that �50% of sites show a decrease in the propensity for the newly resident
amino acid while the remaining sites show an increase. Furthermore, the distributions of the magnitudes of positive and
negative shifts were comparable. Preferences were often conserved via a significant negative autocorrelation in propen-
sity changes—increases in propensities often followed by decreases, and vice versa. Lastly, we explore the underlying
mechanisms that lead propensities to fluctuate. We observe that stabilizing replacements increase the mutational
tolerance at a site and in doing so decrease the propensity for the resident amino acid. In contrast, destabilizing
substitutions result in more rugged fitness landscapes that tend to favor the resident amino acid. In summary, our
results characterize propensity trajectories under nonadaptive stability-constrained evolution against which evidence of
adaptations should be calibrated.

Key words: evolutionary Stokes shift, entrenchment, contingency, stability, protein evolution, amino acid preferences.

Introduction
Interactions between amino acids within a protein are a fun-
damental form of epistasis, resulting in amino acid preferen-
ces at individual sites that are a function of the complete
protein sequence. These interdependencies occur because
of functional, structural, or stability constraints on proteins
and have significant impact on evolutionary trajectories
(Ortlund et al. 2007; Pollock et al. 2012; Gong et al. 2013). It
has become evident that accounting for epistasis between
sites is critical for explaining various evolutionary dynamics
and properties observed in natural sequences (Kimura 1985;
Goldstein and Pollock 2017; de la Paz et al. 2020). Here, we
focus on epistasis arising due to stability constraints by
modeling protein evolution based on first principles of ther-
modynamics. This modeling framework reproduces realistic
properties of proteins with regards to stability values
(Goldstein 2011), evolutionary rates (Youssef et al. 2020),
temporal and spatial patterns of rate heterogeneity
(Goldstein and Pollock 2016), and levels and trends in

convergence rates (Goldstein et al. 2015). Using this frame-
work, we explore long-term shifts in amino acid preferences
due to nonadaptive stability constraints, where the overall
fitness landscape on which the protein evolves remains
constant.

Under nonadaptive evolution, the fixed global fitness land-
scape implies no change in environment and that the func-
tion of the protein remains conserved (Wright 1932). Natural
selection maintains the protein near a peak on its landscape
with equilibrium dynamics shaped by mutation, drift, and
selection. At equilibrium, most mutations are deleterious
and only a small proportion is beneficial. The higher fixation
probability of the fewer but more advantageous mutations is
balanced by a lower fixation probability of the more frequent
yet disadvantageous mutations. As a result, the proportion of
deleterious and beneficial substitutions (i.e., fixed mutations)
are equal (Cherry 1998; Goldstein 2013). This scenario con-
trasts with the dynamics under adaptive evolution where
novel protein function or environment lead to shifts in the
fitness landscape, rendering the current state suboptimal.
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Subsequent fixations that increase fitness transiently inflate
substitution rates, a key characteristic of adaptive episodes
(dos Reis 2015; Jones et al. 2017).

Since its origin, the strictly neutral model of protein evolu-
tion is often treated as the null scenario that must be rejected
prior to postulating adaptive evolution (Kimura 1968, 1991;
Duret 2008). Equilibrium dynamics under stability-
constrained models are consistent with nearly-neutral theory
(Goldstein 2011). Such stability-constrained models were es-
sential for demonstrating that the marginal stability of many
proteins is an expected, emergent phenomena at mutation–
drift–selection equilibrium, challenging the notion that evo-
lution actively selects for marginal stability (DePristo et al.
2005; Goldstein 2011). Furthermore, nonadaptive epistatic
models predict various characteristics evident in natural pro-
teins—such as marginal stability (Goldstein 2011), as well as
differences in mutational tolerance and substitution rates
across sites (Youssef et al. 2020)—highlighting that adaptive
evolution need not be invoked to explain their presence.

Using a nonadaptive stability-constrained model, Pollock
et al. (2012) observed that the preference for a newly
substituted amino acid tends to increase over time due to
substitutions at other protein sites. They referred to this phe-
nomenon as the “evolutionary Stokes shift” which is under-
pinned by ensemble entropic effects occurring at the level of
the whole sequence (Goldstein and Pollock 2017). Using a
different stability model, Shah et al. (2015) performed exten-
sive in silico evolution and observed that substitutions are
often contingent on prior replacements at other positions
that increased their probability of fixation, and that substitu-
tions were entrenched by subsequent replacements that de-
creased their rate of reversion. As such, entrenchment and
evolutionary Stokes shift have been used interchangeably in
the literature (Echave and Wilke 2017; Flynn et al. 2017; Teufel
and Wilke 2017; Haddox et al. 2018; Starr et al. 2018; see
supplementary table S1, Supplementary Material online for
a list of papers where an explicit definition of evolutionary
Stokes shift was provided along with direct quotations).

In contrast with these theoretical predictions, experimental
evidence suggest that amino acid preferences are often con-
served over long evolutionary time scales (Ashenberg et al.
2013; Doud et al. 2015; Risso et al. 2015; Haddox et al. 2018;
Starr et al. 2018). More recently, decreases in resident amino
acid preferences have been observed (Popova et al. 2019;
Stolyarova et al. 2020). The negative shifts in preferences were
interpreted as evidence of adaptations to external environmen-
tal changes. Specifically, Popova et al. (2019) stated that epistatic
interactions between sites “cannot lead to a systematic reduc-
tion in fitness of the incumbent alleles, while this is the expected
result of fitness changes with origin that is external to the
genome.” They referred to this phenomenon as “senescence.”

Faced with seemingly conflicting observations, it is unclear
if there are general patterns in how amino acid preferences
shift during evolution. Do resident amino acid preferences
increase, decrease, or remain conserved? And to what extent
are these dynamics shaped by nonadaptive processes? To
address these questions, we characterize the trajectories of
propensities following an amino acid fixation at a site. Using

extensive simulations under a stability-constrained model, we
apply two quantitative metrics to evaluate trajectories in pro-
pensity (calculated as the expected equilibrium frequency at a
given site) over windows of amino acid residency. We observe
that all three trajectories emerge from nonadaptive dynamics
at mutation–drift–selection equilibrium. Importantly, resi-
dent amino acid preferences can decrease merely due to ep-
istatic constraints and in the absence of any adaptive change.

Lastly, we characterize the mechanisms that cause propen-
sities to fluctuate. Following a stabilizing substitution, most
sites are more mutationally tolerant. The higher mutational
tolerance implies that substitutions will have little or no det-
riment to fitness. Therefore, the propensities for the resident
amino acids decreases. In contrast, destabilizing substitutions
result in more restrictive site-specific fitness landscapes, lim-
iting potential substitutions, and increasing the propensity for
the resident amino acid. Generally, epistasis tends to conserve
the preference for the resident amino acid at a site via a
significant negative autocorrelation in propensity changes:
increases in propensities tend to be followed by decreases
(and vice versa). Importantly, these phenomena emerge
from a nonadaptive model of sequence evolution with con-
straints on protein stability and assuming no external envi-
ronmental or functional changes.

Results

Modeling Approach
Using a thermodynamic model, we equate fitness to the
probability of an amino acid sequence, s, folding correctly
into a native structure at thermodynamic equilibrium,
PfoldðsÞ. We define s ¼ ½a1; :::; aL� where ah represents
the amino acid present at site h and L is the length of the
protein. Fitness can then be calculated as

fðsÞ ¼ PfoldðsÞ ¼
exp½�bDGðsÞ�

exp½�bDGðsÞ� þ 1;
(1)

where DGðsÞ denotes the thermostability of the sequence, b
¼ 1=kT (kT¼ 0.6), k is the Boltzmann constant, and T is the
absolute temperature. We assume no changes in structure or
function of the protein so that the global fitness landscape
(the mapping between amino acid sequence and fitness)
remains constant. Nonetheless, this modeling framework
accounts for epistasis by assigning site-specific fitness land-
scapes dependent on the background sequence (i.e., the
amino acids present at all other sites in the protein). The
fitness landscape at a site h can be fully defined by a vector
of length 20, f hðsÞ ¼ ff h

1 ðsÞ; . . . ; f h
20ðsÞg, where f h

a ðsÞ is the
fitness of the protein given that amino acid a occupies site
h in the context of the background sequence s (where a ¼ 1
. . . 20 represents the amino acids in arbitrary order). This
framework assumes that selection acts only on the final pro-
tein product. To account for mutational biases that arise at
the DNA level and to account for redundancy in the genetic
code, we model the evolution of the codon sequence
sc ¼ ½c1; . . . ; cL�, where ch represents the codon occupying
site h, allowing for more realistic mutation dynamics (see
Materials and Methods for details).
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Amino acids that confer higher fitness values (improve
stability) will tend to more frequently occupy a site and
have higher expected frequencies (i.e., propensities). The for-
mal relationship between fitness and frequency is

ph
aðsÞ ¼

pð0Þa e2Ne f h
a ðsÞP

xp
ð0Þ
x e2Nef h

x ðsÞ;
(2)

where Ne is the effective population size and pð0Þa are the
neutral stationary frequencies (dos Reis 2015). We calculate
pð0Þa as the sum over the neutral stationary frequencies for
synonymous codons for each amino acid. The site-specific
frequency landscape at site h, given a particular background
sequence s, is defined by as a vector of length 20
phðsÞ ¼ fph

1ðsÞ; . . . ; ph
20ðsÞg, representing the frequency

for each amino acid.
We equate propensity to the expected frequency, as de-

scribed by equation (2), which represents a theoretical quantity
at equilibrium and assumes that the rest of the sequence is held
constant. In previous work (Pollock et al. 2012; Goldstein and
Pollock 2017), propensities represented thermodynamic pref-
erences of amino acids and effectively did not permit muta-
tional biases or codon redundancy. This can be accommodated
in our formulation by assuming a uniform pð0Þa distribution
(pð0Þa ¼ 1/20). However, our simulations are based on natural
proteins with unequal nucleotide frequencies and transition/
transversion rate biases. We account for these by approximat-
ing protein-specific pð0Þa values based on the nucleotide fre-
quencies and mutation rates estimated from multiple
sequence alignments for each of the proteins (see Materials
and Methods for details; supplementary fig. S1, Supplementary
Material online). Nevertheless, our results remained consistent
under both definitions of propensity (supplementary fig. S2 and
table S2, Supplementary Material online). Unless otherwise
stated, we use the mutation-biased expected frequencies to

measure amino acid propensities because it can be directly
estimated from sequence alignments of natural proteins.
Importantly, we observed that the fittest amino acid does
not necessarily have the highest propensity. This occurs
when a suboptimal amino acid has many codon aliases—the
high number of synonymous codons and/or mutational bias
can increase the residue’s frequency despite its lower fitness.

The results presented below are based on 500 protein-specific
simulations based on three natural proteins. The proteins differ
in structure (PDB codes: 1qhw, 2ppn, and 1pek), function (a
phosphatase, an isomerase, and a proteinase), and length (300,
107, and 279 amino acids). We ran each simulation for 500
substitutions with Ne¼ 100. These simulation parameters allow
for extensive diversity: On average, sequences diverged at 43% of
sites within a simulation. Increasing the number of substitutions
(5,000 substitutions) or the effective population size (Ne ¼ 106)
did not alter our results (supplementary table S2 and supple-
mentary text, Supplementary Material online).

Increases, Decreases, and Conservation of Preferences
under Nonadaptive Evolution
Throughout our simulations, and in natural protein evolution
(Ashenberg et al. 2013; Gong et al. 2013; Risso et al. 2015;
Youssef et al. 2021), the preference for amino acids fluctuate.
In natural proteins, these variations can occur because of
nonadaptive processes (such as epistasis) or adaptive pro-
cesses (such as environmental or functional changes). By con-
trast, variations in site-specific fitness and propensity
landscapes in our simulations are due solely to stability-
induced epistasis and are not adaptive. Examples of these
propensity dynamics are shown in figure 1. The propensity
for aspartic acid (D), the resident amino acid at site 232,
increases as substitutions occur at other sites (fig. 1A).
Alternatively, at site 72 the propensity for the resident amino
acid proline (P) decreases (fig. 1B), whereas at site 88, the

FIG. 1. Trajectories of amino acid preferences under nonadaptive evolution. (A, B, C) Trajectories of resident amino acid propensities as
substitutions occur at other positions in the protein. (D, E, F) Trajectories of expected replacement rates calculated as the sum of transition
rates to neighboring sequences that differ from the current sequence at the site of interest. (A, D) The propensity for the resident amino acid at site
232, aspartic acid (one letter code D), increases over time. (B, E) The propensity for the resident amino acid at site 72, proline (one letter code P),
decreases over time. (C, F) The propensity for the resident amino acid glutamine (one letter code Q) at site 88 remains conserved. Results are from a
simulation of the 1pek protein.
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propensity for glutamine (Q), the resident amino acid,
remains relatively conserved (fig. 1C). All three trajectories
emerged at mutation–drift–selection equilibrium and in
the absence of adaptive changes.

Shifts in amino acid propensities can be assessed experi-
mentally by comparing the fitness effect of an amino acid
mutation in the context of different background sequences,
or shifts can be inferred from analyses of multiple sequence
alignments (see Youssef et al. [2021] for a review). In partic-
ular, shifted propensities will lead to variations in replacement
rates (Popova et al. 2019; Gelbart and Stern 2020). Therefore,
in addition to the amino acid propensities, we calculated the
expected replacement rate confirming the predicted effect
(Figure 1D and E). At site 232, the increase in propensity is
accompanied by a decrease in the expected replacement rate
(fig. 1A and D). Similarly, the decrease in resident amino acid
propensity at site 72, is accompanied by an increase in the
expected replacement rate (fig. 1B and E). Therefore, both
increases and decreases in replacement rates can occur under
nonadaptive evolution.

A Balance in Frequency and Magnitude of Positive and
Negative Shifts in Amino Acids Preferences Following
Substitution
The previous results demonstrate that propensity shifts can
occur under nonadaptive evolution. However, it remains
unclear whether shifts are widespread or rare. To address

this, we developed two metrics to quantify trends in propen-
sities over windows where an amino acid is first accepted and
subsequently replaced at a site. The metrics are described in
detail in the Materials and Methods and illustrated in
figure 2A. Briefly, metric MSLR is the Slope of the Linear
Regression where the covariate x is time (measured in sub-
stitutions) and the response y is the propensity of the resident
amino acid. Although propensity values are expected to cor-
relate (Pollock et al. 2012), this is not expected to bias the
slopes of different trajectories to be positive or negative. MSLR

is therefore an adequate metric for identifying the average
trend in propensity. Additionally, we quantify shifts using a
second metric, MAMI, calculated as the Average propensity of
an amino acid while it is resident Minus its Initial propensity.
This metric is consistent with the sitewise dynamics that are
expected to occur under the evolutionary Stokes shift where
“the inherent propensity for [an] amino acid at that position
will be, on average, higher than it was when the substitution
occurred” (Pollock et al. 2012). Values of MSLR and MAMI > 0
indicate a positive shift in the propensity of the resident
amino acid, whereas values < 0 suggest a decrease in the
resident amino acid propensity.

Given the time reversibility of the underlying evolutionary
model (Goldstein and Pollock 2017), any set of sequences
observed forward in time is, in the long run, expected to be
observed backward in time and with the same frequency.
Thus, a set of sequences where the propensity for the resident

FIG. 2. Description of metrics used to estimate propensity shifts. (A) Plotted is an example trajectory observed at site 82 of the 1pek protein. The site
accepts two substitutions (vertical dotted lines) and the resident amino acid changes from D!E!D. We focus on the dynamics following the
acceptance of amino acid E. The first metric, MSLR, is the Slope of the Linear Regression where x is the number of substitutions and y is the
propensity of the resident amino acid a at site h (ph

a) calculated over i � x � j; i is the substitution where amino acid a first occupies the site and j
is the last substitution. The second metric MAMI is the Average propensity of an amino acid while it is resident (avg[ph

ajres]) Minus its Initial
propensity (ph

ajnew). Metric values > 0 indicate positive shifts in resident amino acid propensities and values < 0 indicate negative shifts in
propensities. (B) Hexbin plot showing the relationship between MSLR and MAMI. The shade of each hexbin represents the number of points per
hexbin. Reported are the relative percentage of points within each quadrant across all simulations. (C, D) The distribution of MSLR and MAMI,
respectively, estimated from 500 simulations for each of three proteins (1qhw, 2ppn, and 1pek), and the distributions based on a randomized
model where propensities changed randomly over time.
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amino acid increases is also expected to be observed in the
reverse direction with negative propensity trends. Therefore,
in theory, positive and negative shifts should be balanced.
However, because sequence space is so vast, and movement
on it is highly correlated, such arguments need not apply over
relatively short evolutionary time scales (or timescales com-
parable with those observed in natural proteins). In practice,
therefore, it is unlikely that one would observe the same set of
sequences in forward and reverse order.

Results from MSLR reflect the expected balance in positive
and negative shifts (fig. 2C and table 1). However, estimates
from MAMI suggest an excess of positive shifts (�60%) com-
pared with negative shifts (�40%; fig. 2D and table 1). Why
do percentages differ under MSLR and MAMI? And, more im-
portantly, is the excess of positive shifts under MAMI due to
epistatic adjustments at other sites? A natural null model to
investigate these dynamics is a model of neutral evolution
(e.g., Halpern and Bruno [1998]). However, under such a
model propensities would not vary at all because sites are
assumed to evolve independently and hence have fixed site-
specific landscapes. Therefore, an alternative model in which
both positive and negative shifts are expected to occur with
equal frequencies is required to assess the discrepancy in the
metrics and whether the estimates may be biased. To this
end, we developed two models, an autocorrelated and a ran-
domized model, where the resident and initial propensity
were drawn from the same distribution and hence no sys-
tematic trend in propensities to either increase or decrease
during an amino acid’s residency is expected. Both models
sampled initial and resident amino acid propensities from the
empirical propensity distribution observed in the stability
simulations. In the autocorrelated model, the sampling en-
sured that the propensities in this simulation had the same
first-order autocorrelation as was observed in the stability
simulations (R¼ 0.95). In the randomized model, propensi-
ties were sampled randomly from the empirical distribution,
allowing us to assess the behavior of the system in the ab-
sence of any epistatic or temporal adjustments. In both these
simulations, MSLR estimated equal percentages for positive
and negative shifts (table 1). However, MAMI estimated a
higher percentage of positive shifts compared with negative
shifts. The higher estimated occurrence of positive shifts,
therefore, does not suggest that positive shifts are truly

occurring at higher frequencies but rather highlights a statis-
tical artifact associated with MAMI.

We can understand the cause of this kind of artifact by
evaluating the distribution of amino acid propensities.
Propensities are often less than 0.5 when an amino acid is
first substituted, and in most cases, they remain low (fig. 3A).
The distribution of an average of sampled propensities from
such a distribution will not be the same as the distribution of
a single (initial) propensity (fig. 3A compared with fig. 3B). We,
therefore, hypothesize that the asymmetry in the propensity
distribution is leading to higher estimates of positive shifts
under MAMI. To test this hypothesis, we simulated trajectories
by sampling resident amino acid propensities from two sym-
metric distributions: a uniform distribution U(0,1) and a trun-
cated normal distribution N(0.5, 0.1). For consistency, we
sampled residency times from the empirical distribution of
times observed during the stability-constrained simulations.
When the propensity distribution was symmetric (normal or
uniform), both metrics, MAMI and MSLR, estimated equal pro-
portions of positive and negative shifts (supplementary figs.
S3 and S4, Supplementary Material online). This demon-
strates that MAMI is sensitive to the shape of the propensity
distribution and will estimate an excess of increases in resi-
dent amino acid propensities if the distribution is asymmetric.

Although the higher occurrence of positive shift under
MAMI can be explained by the shape of the propensity distri-
bution observed in the simulation, an important question
remains: Why are propensities so often less than 0.5 in the
stability simulation? Substitutions tend to occur within a
“neutral zone” where the original and newly substituted
amino acids have similar fitness contributions, and therefore
similar propensity values (Goldstein and Pollock 2017). This is
evident from the higher correlation between propensities of
the original and newly substituted amino acids than the cor-
relation between the original amino acid and other residues
(fig. 3C). Because all 20 amino acid propensities must sum to
one, and the propensities for the original and newly
substituted amino acids must be similar, they are likely to
be � 0:5. Although this explains why the distribution of
initial propensities is right skewed (with most of the density
less than 0.5), it is unclear why the propensities after accep-
tance and while the amino acid is resident are similarly dis-
tributed (fig. 3A). We explore this in detail below.

Stability-Mediated Epistasis Conserves, Rather Than
Alters, Amino Acid Propensities
It is initially surprising that amino acids tend to have similar

propensities when they are resident compared with when
they are first accepted at a site since it seems to counter
the expectation from the evolutionary Stokes shifts where
it is expected that “epistatic interactions [will] cause shifts
in amino acid preferences, tending to make the newly resi-
dent amino acid more favorable” (Pollock and Goldstein
2014). However, Pollock et al. (2012) previously observed
that the rate of decay for amino acids preferences at a site
is relatively slow. By looking at autocorrelations in propensi-
ties as a function of the number of substitutions, they ob-
served that initially high autocorrelation values decay over

Table 1. Percentage of Negative Shifts, Where the Propensity for the
Resident Amino Acid Decreases during Its Residency (MX < 0 for X
¼ SLR or AMI).

MSLR MAMI

1qhw 51.8 42.4
2ppn 51.0 41.0
1pek 50.9 40.8
Randomized model 49.0 34.6
Autocorrelated model 46.8 42.0

NOTE.—Results are based on 500 protein-specific simulations (1qhw, 2ppn, and
1pek), a randomized model where propensities changed randomly over time,
and an autocorrelated model where propensities had the same first-order auto-
correlation as observed in the simulation.
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time consistent with a stretched exponential. This autocor-
relation in propensities leads to a distribution of resident
amino acid propensities that tends to closely match the dis-
tribution of initial propensities (fig. 3D).

Although resident and initial propensities were compara-
ble in the stability simulations, average propensities were of-
ten higher than initial propensities in the randomized model
(compare median lines in fig. 3A and B). Furthermore, the
percentages of positive shifts from the randomized model
were higher than those from the stability simulations under
MAMI (table 1) and the median value was an order of mag-
nitude higher in the random model (5e-2) compared with the
stability simulation (7e-3; fig. 2D). In other words, resident
amino acid propensities were more likely to increase if pro-
pensities were changing randomly compared with stability-
constrained evolution.

In the stability simulations, an amino acid having a high
initial propensity is likely to continue enjoying high propen-
sity throughout its residency, and low initial propensities of-
ten remain low (fig. 3D). When initial propensities were
between 0.0 and 0.06, there were fewer instances of positive
shift in the stability simulation than the randomized model,

leading to a lower average MAMI value (fig. 3E). In contrast,
when initial propensities were high, between 0.25 and 1.0,
there were fewer instances of negative shifts in the stability
simulation than the null model, leading to a higher average
MAMI value (fig. 3E). This further supports that propensities
are more conserved in the stability simulations than the ran-
domized model.

That resident amino acid propensities were more con-
served in the stability simulations is expected given the auto-
correlations in amino acid propensities (Pollock et al. 2012). In
addition to this, we observed a significant negative first-order
autocorrelation in propensity changes (autocorrelation aver-
aged across sites were between�0.21 and�0.24; supplemen-
tary table S3, Supplementary Material online). This suggests
that increases in propensity tend to be followed by decreases
(and vice versa) leading to lower variability in propensities in
the stability model compared with the expectation if propen-
sities were varying randomly. Although these results suggest
that stability-mediated epistasis frequently conserves amino
acid propensities, there will be instances where propensities
shift considerably over time at some sites. Importantly, how-
ever, nonadaptive dynamics will be balanced in the

FIG. 3. Stability-mediated epistasis conserves amino acid preferences. (A) Empirical distribution of initial (ph
ajnew) and resident (ph

ajres) amino acid
propensities observed during simulations of the 1qhw protein. Dotted line represents the median ph

ajnew value. (B) Distribution of the average
propensity of an amino acid while it is resident in the stability simulation (blue distribution) and the randomized model where propensities varied
randomly over time (yellow distribution). Lines represent the median value from the respective distribution. (C) Pearson correlation between
propensities of previously resident amino acids (ph

old) and newly accepted residues (ph
new) observed in the simulations (blue line) compared with a null

distribution (gray distribution). The null distribution was obtained by estimating the correlation between the propensity of the previous amino acid
(ph

old) and the propensity of a randomly sampled residue given the same site and background sequence. This was repeated 10,000 times. (D) Violin
plots showing the distributions of ph

ajres (dark blue) given that ph
ajnew (light blue) was within a specific range. Ranges were selected such that

approximately 20% of substitutions occurred within each range. (E) The mean and standard deviation for MAMI estimates within each ph
ajnew range.
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frequencies and magnitudes of such increases and decreases
in propensities, consistent with a nearly-neutral system
where, on average, each beneficial substitution is balanced
by a corresponding deleterious substitution (Hartl and
Taubes 1996; Sella and Hirsh 2005).

The Dynamics of Positive and Negative Shifts in
Propensities Are Comparable under Nonadaptive
Evolution
A drawback of the current metrics is that they cannot distin-
guish between different underlying propensity dynamics. For
example, the metrics estimate similar values for the following
scenarios: 1) a rapid increase (or decrease) in amino acid
propensity followed by a longer period where the propensity
remains high (or low), and 2) a more gradual increase (or
decrease) in propensity over time. It may be the case that
positive shifts occur soon after a substitution, whereas nega-
tive shifts are more gradual. To quantify whether propensity
changes accelerated or decelerated, we compared the abso-
lute value of each metric calculated over the first half of the
amino acid residency (we label this as M1X) and the estimate
over the second half (M2X), where X is either SLR or AMI.
Specifically, we calculated the rate of propensity change as
ðjM2Xj � jM1XjÞ=Tres where Tres is the amino acid residency
time (measured in number of substitutions). If the dynamics
are such that there is an initial rapid change (increase or de-
crease) in propensity, then the rate of change will be greater
than zero. Alternatively, a consistent and gradual shift in pro-
pensity will result in a rate of change that is approximately
zero. We found no significant differences in the average rates
of change between positive and negative shifts (Welch’s t-test,
all P values > 0.05, supplementary table S4, Supplementary

Material online). Additionally, we observed that amino acids
that are physicochemically similar to the resident amino acid
will tend to experience similar shifts in propensities (both
negative and positive; supplementary fig. S5, Supplementary
Material online).

Shifts in Propensities Occur at Exposed and Buried
Sites
A site’s location in a protein influences its evolutionary dy-
namics. For globular proteins, surface residues are usually in-
volved with protein function (e.g., binding affinity, enzymatic
activity) with a preference for hydrophilic residues, whereas
buried sites prefer hydrophobic residues and evolve slower
(Shahmoradi et al. 2014; Yeh et al. 2014; Echave et al. 2015;
Marcos and Echave 2015). Two measures of a site’s location in
the protein are relative solvent accessibility (RSA) and
weighted contact number (WCN). Both RSA and WCN cor-
relate significantly with substitution rates in natural
(Shahmoradi et al. 2014; Yeh et al. 2014; Marcos and
Echave 2015) and simulated proteins (Youssef et al., 2020).
Exposed sites have higher substitution rates, higher RSA, and
lower WCN than buried sites. In line with these observations,
we found a negative correlation between average residency
time and RSA and a positive correlation with WCN (supple-
mentary fig. S6, Supplementary Material online).

Popova et al. (2019) recently suggested that buried sites are
more likely to undergo positive shifts in propensities of resi-
dent amino acids, whereas exposed sites are more prone to
decreases in propensities. We assessed sites’ susceptibility to
positive and negative shifts by examining the relationship
between the metrics and location in the protein. The metrics
show no tendency to increase (or decrease) with either RSA

FIG. 4. Stabilizing substitutions reduce resident amino acid propensities while destabilizing substitutions often increase propensities. (A) Stability-
mediated epistasis between sites results in changes in resident amino acid propensities as substitutions accrue. Following an amino acid
replacement at one position in the protein, so that the sequence changes from sx ! sxþ1, the propensity of the resident amino acids at all sites
will change. The gray dots are the changes in the propensities of the resident amino acids at each site in the protein following a substitution,
Dph

a ¼ ph
aðsxþ1Þ � ph

aðsxÞ. The red dots are the change in the propensity of the resident amino acid at the substitution site, and therefore a change
in the amino acid from a! b (Dph

a!b ¼ ph
bðsxþ1Þ � ph

aðsxÞ). (B) Stabilizing substitutions (DDG < 0) decrease resident amino acid propensities
at most sites. In contrast, destabilizing substitutions (DDG > 0) result in a lower percentage of sites where Dph

a < 0.
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(supplementary fig. S7, Supplementary Material online) or
WCN (supplementary fig. S8, Supplementary Material online).
Furthermore, the average values of MSLR at exposed and bur-
ied sites were not significantly different (Welch’s t-test, P
values > 0.05 for all proteins; supplementary table S5,
Supplementary Material online. Conditional distributions
shown in supplementary fig. S9, Supplementary Material on-
line). Although the average MAMI values were significantly
higher at buried compared with exposed sites (Welch’s t-
test, P values < 0.001 for all proteins; supplementary table
S5, Supplementary Material online), the effect sizes were mi-
nor (6e-3, 1e-2, and 8e-3 for the 1qhw, 1pek, and 2ppn pro-
teins, respectively). Therefore, positive and negative shifts do
not tend to be associated with the locations of sites in a
protein. Our conclusions are consistent with experimental
results in the HIV envelope protein where sites with shifted
propensities were observed across the protein (Haddox et al.
2018).

Next, we assessed whether location in the protein might
influence the rate of propensity changes. For example, a del-
eterious substitution at a surface site might be compensated
for by adjustments at a small number of interacting sites,
leading to a rapid shift in propensity. Alternatively, a delete-
rious substitution at a highly connected site might require

more adjustments at other positions, and, therefore, the pro-
pensity shift may be gradual. However, we found that the
average rates of change were not significantly different at
buried and exposed sites (supplementary fig. S10 and table
S6, Supplementary Material online).

Stabilizing Substitutions Increase Resident Amino
Acid Propensities whereas Destabilizing Substitutions
Decrease Them
We have shown that long-term shifts in amino acid prefer-
ences can occur because of nonadaptive stability-mediated
epistasis. Next, we turn to the underlying mechanisms that
cause changes in propensities after a single substitution.
Following a substitution, the fitness and propensity land-
scapes at most sites in the protein will change because of
epistasis. Important questions about how substitutions alter
propensities remain unanswered: Do substitutions tend to
favorably impact some sites (by increasing their resident
amino acid propensities) while simultaneously disadvantag-
ing other sites (by decreasing their resident amino acid pro-
pensities)? Or does a substitution impact propensities
similarly across sites? We found that the effect of substitution
on resident amino acid propensities is unbalanced.
Substitutions either favorably (or disfavorably) impact most

FIG. 5. Epistatic dynamics following the fixations of stabilizing and destabilizing substitutions. (A) Let s1 be the initial protein sequence, and s2 be
the sequence following the acceptance of a stabilizing substitution (blue dot). Given the stability-buffered sequence s2, deleterious mutations
which would not have been fixed in s1 are now more likely to be fixed (e.g., R, N, P). The fitness landscape (B) and propensity (C) landscapes at a
nonsubstituted site 145 becomes more uniform. The fitness and propensity of the resident amino acid is shown in dark green. The propensity for
the resident amino acid decreases as the landscapes become flatter. (D), (E), and (F) are the respective plots following the fixation of a destabilizing
substitution (red dot). The fitness and propensity landscapes at the nonsubstituted site become less uniform, and the propensity for the resident
amino acid increases. These landscapes were observed in simulations of the 1pek protein.
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sites by increasing (or decreasing) their resident amino acid
propensity (fig. 4A). In particular, stabilizing substitutions
(DDG < 0) were associated with decreases in propensities
of resident amino acids at most sites while destabilizing sub-
stitutions (DDG > 0) caused propensities to increase
(fig. 4B). This result is a consequence of the higher stability
sequences occupying flatter regions in sequence space such
that a higher fraction of mutations is effectively neutral, con-
sistent with experimental findings (Gong et al. 2013).

To illustrate the effect, consider the dynamics following a
stabilizing substitution from s1 ! s2 (fig. 5). We focus on site
145 as an example of the site-specific dynamics. The uphill
move from s1 to s2 (fig. 5A) flattened the fitness landscape at
site 145 (fig. 5B). Given that sequence s2 has greater stability, a
destabilizing mutation has a smaller fitness effect relative to
the same mutation in the less stable s1 sequence. How does
the change in the fitness landscape relate to variations in
propensities? Because a higher number of amino acids can
now occupy the site with little or no detriment to protein
fitness, the propensity landscape will similarly become more
uniform (fig. 5C). Amino acids like R, N, and P that had low
propensity in the context of sequence s1, are more likely given
the “stability-buffered” sequence s2 (fig. 5C). Because propen-
sities must sum to one, the increase in the propensity of some
amino acids (e.g., R, N, and P) will cause a decrease in the
propensity of the resident amino acid (K in this example). The
opposite trends are evident following the fixation of a desta-
bilizing mutation (fig. 5D). The fitness and propensity land-
scapes became less uniform (fig. 5E and F), with fewer amino

acids having nonzero propensities, and an increase in resident
amino acid propensities.

To quantify the effect across all sites, we measured land-
scape uniformity using the Shannon entropy UhðsÞ (see
Materials and Methods for detail). Entropy is highest (�3)
when the landscape is uniform (i.e., all amino acids have equal
frequencies) and is at a minimum (¼0) when only one amino
acid has a nonzero propensity. Note that the uniformity of
fitness and propensity landscapes are highly correlated (sup-
plementary fig. S11, Supplementary Material online). The fit-
ness landscape describes the fitness of nearby sequences,
whereas propensity landscapes consider how frequently
nearby sequences are explored. We, therefore, report the en-
tropy of the propensity landscapes, although we expect sim-
ilar results based on fitness landscapes. As expected, at higher
stability values (lower DG), the landscapes were more uni-
form compared with at lower stability values (fig. 6A,
Spearman correlation coefficients < �0:98 for all proteins,
P values < 0.001).

Next, we assessed how substitutions alter landscape uni-
formity. A change from a uniform to a rugged landscape (with
a small number of amino acids having nonzero propensities),
will result in a negative DUh. In contrast, a positive DUh

indicates an increase in landscape uniformity. We considered
a substitution as permissive if, on average, it increased land-
scape uniformity across sites (i.e., a positive average DU). A
restrictive substitution is one where following its acceptance,
the landscapes at most sites permit fewer amino acids (i.e., a
negative average DU). The stability effect of a substitution

FIG. 6. Stabilizing substitutions are permissive and destabilizing substitutions are restrictive. (A) The relationship between protein stability (DG)
and landscape uniformity, measured as the entropy of the propensity landscape averaged over all sites in the protein (avg U). (B) The relationship
between the stability effect of a substitutions (DDG) and the resulting average change in landscape uniformity (avg DU). Color bar represents the
percentage of sites for which the propensity for the resident amino acid decreased (Dph

a < 0). Positive avg DU values imply that, on average, the
landscapes became more uniform. Therefore, the substitution is deemed permissive. Negative avg DU are indicative of restrictive substitutions.
Plotted results are based on a single simulation of the 1pek protein. (C) The percentages of different types of substitutions for each of three proteins
(1qhw, 2ppn, and 1pek). Percentages are calculated from 500 protein-specific simulations.
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(DDG) is strongly correlated with its influence on landscape
uniformity (fig. 6B, Spearman correlation coefficient �0.99, P
value < 0.001). Consistent with the results in figure 5, stabi-
lizing substitutions provide a stability-buffered background so
that slightly destabilizing mutations are more likely to be
fixed, expanding the space of potential evolutionary paths
(fig. 6C). In contrast, destabilizing substitutions were restric-
tive, limiting potential evolutionary trajectories (fig. 6C).

Discussion
We have examined the evolutionary dynamics of proteins
under nonadaptive stability constraints. We found that as
proteins become more stable, adverse fitness effects of muta-
tions diminish thereby expanding the space of potential evo-
lutionary trajectories. It has been suggested that highly stable
proteins may be more adaptable to new functions because
they are more likely to accept destabilizing, yet functionally
beneficial, mutations than less stable proteins (Schreiber et al.
1994; Wang et al. 2002; DePristo et al. 2005; Nagatani et al.
2007). We suggest that highly stable proteins, all other things
being equal, may also be more adaptable because they are
more apt to explore neighboring regions of sequence space. It
is important to note that selection on other properties of
proteins, such as their expression level and the cost of trans-
lation error (Drummond et al. 2005), can also influence their
evolution. Therefore, the relationship between evolvability
and stability of proteins is likely to reflect the complex inter-
play of multiple factors.

As more (or fewer) mutations become accessible, the pro-
pensity for the resident amino acid at a site will change.
Stabilizing substitutions expand evolutionary paths and, in
doing so, decrease resident amino acid propensities (figs. 4
and 6). By contrast, destabilizing substitutions limit accessible
trajectories and favor the resident amino acid. At mutation–
selection–drift equilibrium, the proportion of stabilizing and
destabilizing substitutions is expected to be equal (Hartl and
Taubes 1996; Cherry 1998; Sella and Hirsh 2005; Goldstein
2011), leading to a balance in the proportion of increases
and decreases in propensities (supplementary fig. S12,
Supplementary Material online). This balance may manifest
as 1) an equal number of propensity increases and decreases
for any given site; or 2) some sites undergoing systematic
increases in propensities, whereas others undergo systematic
decreases in propensities. Our results favor the former sce-
nario because fluctuations in propensities were negatively
autocorrelated and there was no inherent tendency for sites
to experience positive versus negative shifts. Thus, fitness and
propensity fluctuations following a substitution at a site due
to epistatic background effects, over long evolutionary time-
scales (as many as 5,000 substitutions), are expected to be
constrained. This suggests that dynamics will often be largely
a consequence of marginal fitness effects at sites, which is
consistent with findings in Youssef et al. (2021) about evolu-
tionary rate variation.

Evolutionary Stokes shift, contingency, entrenchment, and
senescence describe phenomena that occur as proteins
evolve (Pollock et al. 2012; Shah et al. 2015; Popova et al.

2019). How these phenomena relate to each other is vague
and their use in the literature is often inconsistent (supple-
mentary table S1, Supplementary Material online). Here, we
aim to clarify these terms and their relationship to each other.
Contingency and entrenchment describe changes in the rel-
ative fixation probabilities of substitutions, whereas evolu-
tionary Stokes shifts and senescence relate to changes in
the propensities of resident amino acids. Because both fixa-
tion probabilities and amino acid propensities are a function
of the fitness landscape, these concepts are interlinked.
Increases in resident amino acid propensities are associated
with lower reversion rates over time. As such, evolutionary
Stokes shift and entrenchment have often been used inter-
changeably (Echave and Wilke 2017; Flynn et al. 2017; Teufel
and Wilke 2017; Haddox et al. 2018; Starr et al. 2018). Similarly,
decreases in the propensity of the resident amino acid entails
concomitant increases in both propensities of nonresident
amino acids and their probabilities of fixation (i.e., contin-
gency). Because of this, we have previously referred to
decreases in resident amino acid propensities as an evolution-
ary anti-Stokes shift (Youssef et al. 2021). The previously de-
scribed anti-Stokes shift refers to propensity trajectories
where the propensity for the resident amino acid decreases
during its residency because of replacements at other posi-
tions. This site-level phenomena emerges from thermody-
namic stability constraints which are influenced by entropic
effects occurring at the sequence level (Goldstein and Pollock
2017). In contrast with these phenomena, that can arise un-
der nonadaptive epistatic processes, senescence was used to
denote decreases in resident amino acid propensities due to
external adaptive changes (Popova et al. 2019; Stolyarova et al.
2020). However, as we have clearly demonstrated here, resi-
dent amino acid propensities can decrease in the absence of
any external environmental change.

Variation in replacement rates over time have been in-
ferred as a proxy for shifting amino acid preferences: increases
in resident amino acid propensity lead to decreases in replace-
ment rates, and decreases in propensity lead to higher re-
placement rates (Popova et al. 2019; Gelbart and Stern 2020;
Stolyarova et al. 2020). Analysis of natural protein alignments
often reveal a balance in the number of rate accelerating and
decelerating sites. For example, across five mitochondrial
genes 21/28 sites showed evidence of replacement rate
decreases/increases (Stolyarova et al. 2020), and 137/134 sites
across nine proteins in HIV and SIV (Gelbart and Stern 2020).
Popova et al. (2019) analyzed four influenza A protein align-
ments and found that the ratios of replacement rate
decreases/increases were 2/0, 0/0, 4/12, and 5/8 for the H1,
N2, H3, and N2 proteins, respectively. In light of the results
presented here, the balance in rate increases and decreases in
these data sets is suggestive of nonadaptive processes, con-
trary to arguments made in the aforementioned papers
(Popova et al. 2019; Stolyarova et al. 2020). Importantly, how-
ever, the excess of rate increases in the H3 protein could
indicate evidence of adaptation to an evolving host immune
response (Popova et al. 2019). Future work assessing the dy-
namics of propensity shifts under adaptive evolution is war-
ranted because it is important to calibrate our evidence of
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adaptations with nonadaptive signals. Our argument follows
a broader trend towards evaluating adaptive dynamics
against more realistic null scenarios derived from nearly-
neutral models (Hartl and Taubes 1996; Goldstein 2011;
Razeto-Barry et al. 2012; Jones et al. 2017, 2020; Tamuri and
dos Reis 2021).

An advantage of thermodynamic stability models is that
they provide plausible nonadaptive null models for protein
evolution (Goldstein 2011; Pollock et al. 2012; Goldstein and
Pollock 2017). They have been used to critically assess adap-
tationist claims about the trade-offs between protein func-
tion and stability (Taverna and Goldstein 2002; Goldstein
2011), and protein function and foldability (Govindarajan
and Goldstein 1996). “Despite the seduction of adaptive
rationalizations,” to quote one of the original authors of
this model, “neutral evolutionary dynamics remains the null
model that must first be rejected” (Goldstein 2011). Our
demonstration that amino acid propensities may decrease
over time in the absence of external environmental changes
does not preclude that environmental shifts could render
resident amino acids less favorable. Rather our simulations
demonstrate that decreases in propensities are expected to
occur in the absence of external changes, and therefore that
their mere occurrence should not, on their own, be taken as
conclusive evidence of adaptations.

Materials and Methods

Descriptions of Natural Proteins
We simulated the evolution of three proteins with PDB codes
1qhw, 2ppn, and 1pek. The proteins differ in structure, func-
tion, length, and contact density. The 1qhw protein is a phos-
phatase, the 1pek protein is a proteinase, and the 2ppn
protein is an isomerase. The 1qhw protein has 300 amino
acids, 1pek is made of 297 amino acids, and the 2ppn protein
comprises 107 residues. The 1pek protein was the most
densely packed with an average number of contacts per
site of 8.4 compared with 7.5 for the 1qhw protein and 6.9
for the 2ppn protein.

Evolutionary Model
The evolutionary process is based on the mutation–selection
(MutSel) framework (Halpern and Bruno 1998), assuming a
Wright–Fisher population with fixed effective population size
(Ne) under a weak mutation, strong selection regime so that
only a single variant exists in the population at any time point.
Given a current sequence s, the probability that sequence
t, with a single mutated site, will be fixed in a diploid popu-
lation is

Pfix ¼
1� exp½�2ffðtÞ � fðsÞg�

1� exp½�4NeffðtÞ � fðsÞg�; (3)

where f(s) is the fitness of sequence s. Selection is assumed to
act on the final protein product, and therefore all synony-
mous codons have the same fitness. We performed simula-
tions with Ne ¼ 100 and 106. Both yielded similar results
(supplementary table S2 and supplementary text,
Supplementary Material online). Unless otherwise stated,

we report on results from Ne ¼ 100 simulations in the
main text.

We model the substitution process as a continuous-time
Markov chain that is specified by the instantaneous rate ma-
trix Q with elements

qst / 2NelstPfix (4)

where qst is the substitution rate from sequence s to t which
depends on the mutation rate (lst) and the fixation proba-
bility (Pfix). We model mutations at the DNA level following
the HKY85 model (Hasegawa et al. 1985) allowing only single
nucleotide changes. The mutation rate depends on the newly
substituted nucleotide at the codon site where t differs from s.
Specifically, the mutation rate is given by:

lst /
pn if s and t differ by a transversion

jpn if s and t differ by a transition

(
(5)

where j is the transition–transversion rate ratio and pn is the
stationary frequency of the substituted nucleotide n. During
the simulations, we used the nucleotide frequencies (pn) and
transition/transversion rate (j) parameters estimated from
multiple sequence alignments for the corresponding protein
used in Youssef et al. (2020). The mutation parameters
(j; pA; pC; pG; pT) were set equal to (4.37, 0.21, 0.32, 0.28,
0.20) for the 1qhw protein; (0.90, 0.19, 0.35, 0.56, 0.21) for the
1pek protein; and (2.50, 0.27, 0.24, 0.29, 0.19) for the 2ppn
protein.

The state space of a sequence model is made up of 20L

possible states where L is the length of the protein. For all but
the smallest proteins, it is impossible to calculate the 20L �
20L substitution matrix PðtÞ ¼ exp½Qt� for use in simulation.
However, given that the process is currently at sequence s, it is
feasible to calculate the transition rates to all single-
nucleotide step neighboring sequences. To simulate the pro-
cess of sequence evolution, the probability of a transition into
another state given that the process is currently at state s is
calculated as

Pst ¼
qstP
t6¼sqst:

(6)

At each time step, the substitution to the next state t is
determined by a random draw from a multinomial distribu-
tion with probabilities Pst.

To initiate our simulations, we used the algorithm outlined
in supplementary table S7, Supplementary Material online to
obtain protein sequences with fitness values� 0.99 given the
corresponding protein structure. Then, we evolved the equil-
ibrated sequence for 500 substitutions while keeping track of
the site-specific fitness landscapes at all sites. The reported
results are based on the post-equilibration phase. We gener-
ated 500 protein-specific replicates for each protein. We as-
sume equilibrium is reached if DG values were approximately
constant (as done in Ashenberg et al. [2013] and Pollock et al.
[2012]). Allowing for a longer equilibration yielded similar
results (supplementary table S2, Supplementary Material on-
line). Additionally, increasing the number of substitutions per
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simulation had no effect on the reported results (supplemen-
tary table S2 and supplementary text, Supplementary
Material online).

Stability Model
We use the same stability model outlined in Goldstein (2011),
Pollock et al. (2012), Goldstein and Pollock (2017), and
Youssef et al. (2020). We assume that the fitness, f(s) for a
sequence s, is equal to the probability of it being in the native
structure at thermodynamic equilibrium, PfoldðsÞ as defined
in equation (1). Thermostability is the difference in free en-
ergy between the folded (EF) and unfolded states (EU),
DG ¼ EF � EU. The free energy of a sequence s in a given
structure k is approximated as the sum of pairwise potentials
for amino acids in contact.

Ek ¼
X
x< y

eMJðax; ayÞCM
x;y;
k (7)

where eMJ are the contact potentials determined by
Miyazawa and Jernigan (1985), and CMk is the contact matrix
specifying interactions between sites in structure k such that
CM

x;y
k ¼ 1 if site x and y are in contact and 0 otherwise.

Residues are considered to be in contact if the Cb atoms
are within 7 Å of each other. If the amino acid present is
glycine, distance is considered with reference to the Ca

atom. The free energy associated with the folded state EF

can be calculated using equation (7), with k as the known
native structure. Usually, however, there is not a single un-
folded configuration and it is intractable to characterize the
entire set of possible unfolded structures, making it challeng-
ing to estimate EU directly. Instead, a subset of structures
fkUg is selected to characterize the distribution of thermo-
dynamic properties of the ensemble of unfolded micro-
states (supplementary table S8, Supplementary Material
online). Then, the free energy in the unfolded state is given
by the Helmholtz equation:

EU ¼ �b�1lnZU (8)

where b ¼ 1=kTð¼ 1=0:6Þ, k is the Boltzmann constant, T is
absolute temperature, and ZU is the partition function.
Assuming that the free energies approximately follow a
Gaussian distribution, the set of structures fkUg is used to
estimate the mean �E and standard deviation DE2 that define
the distribution, qðEÞ, of free energies, E, over unfolded states:

qðEÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pDE2
p exp

�ðE� �EÞ2

2DE2

� �
: (9)

The partition function sums over all unfolded energies
which is equivalently a sum of all possible energies, weighted
by how frequently they arise:

ZU ¼
XNU

i¼1

exp ð�bEiÞ (10)

� NU

ð
qðEÞ expð�bEÞdE (11)

¼ NU exp
1

2
b2DE2 � b�E

� �
; (12)

where NU is the number of unfolded microstates set equal to
3.4L, allowing for 3.4 configurations per residue. Finally, the
stability of a sequence s can be rewritten as

DG ¼ EF þ b�1lnZU (13)

¼ EF � �E þ 1

2
bDE2 þ b�1lnNU (14)

Amino Acid Propensities
Suppose that for a simulation trial we observed s1 ! s2 !
. . .! s500 where the sx’s are the codon sequences realized
during the simulations, and sx and sxþ1 differ by a single
nucleotide substitution (synonymous or nonsynonymous).
Given the translated amino acid sequence s ¼ ½a1; . . . ; aL�,
we can calculate the fitness of any amino acid b at
site h holding the rest of the sequence constant,

f h
b ðsÞ ¼ fða1; . . . ; ah�1; bh; ahþ1; . . . ; aLÞ. The fitness land-

scape at a site can then be fully defined by a 20-element

vector f hðsÞ ¼ ff h
1 ðsÞ; . . . ; f h

20ðsÞg for each of the 20 amino
acids in arbitrary order. We use these fitness values and

neutral amino acid frequencies, pð0Þa , to calculate propensi-

ties using equation (2). The pð0Þa are calculated as the sum
over the neutral stationary frequencies for synonymous
codons for each amino acid. The neutral frequency for a
codon made up of nucleotide triplet lmn is proportional to
plpmpn.

Description of Metrics Used to Quantify Shifts in
Propensities
We define two metrics to quantify shifts in propensities. First,
let the residence time of an amino acid (Tres) be the time
period between i and j, where i is the substitution when
amino acid a first occupies the site and j is the last substitu-
tion. The first metric is the Slope of the Linear Regression over
Tres where the covariate x is time (measured in substitutions)
and the response y is the propensity of the resident amino
acid a at site h (ph

a). We refer to this metric as MSLR. The
second metric MAMI is the difference in the Average propen-
sity of an amino acid while it is resident (avg[ph

ajres�) Minus its
Initial propensity (ph

ajnew). Metrics values greater than 0 are
suggestive of positive shifts in amino acid propensities and
values less than 0 are indicative of negative shifts. Figure 2
provides a visual representation of the metrics.

For all results described in this study, we only considered
the dynamics when a residue was accepted and subsequently
replaced within the timeframe of the simulation, and where
the amino acid was resident for at least ten substitutions.
However, we repeated the analyses with the inclusion of par-
tial windows (where for example an amino acid is accepted
during the simulation but the simulation ends prior to its
replacement) which revealed similar results.

Youssef et al. . doi:10.1093/molbev/msac030 MBE

12

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/3/m
sac030/6522130 by guest on 09 Septem

ber 2023

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac030#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac030#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac030#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac030#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac030#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac030#supplementary-data


Quantifying the Uniformity of a Landscape
We use the Shannon entropy of a propensity landscape as a
measure of its uniformity. We calculate entropy as

UhðsÞ ¼ �
X

a

ph
aðsÞlnph

aðsÞ; (15)

where ph
aðsÞ is the propensity of amino acid a at site h given

background sequence s. The entropy is maximized (�3)
when all amino acids are equally likely, and is minimized (¼
0) when only a single amino acid is observed. To determine
how the landscapes change in response to changes in the
background protein sequence, we compared the entropy be-
fore and after the substitution

DUh ¼ Hhðsxþ1Þ � HhðsxÞ: (16)

We classified a substitution as permissive if the average DU
across all sites was positive, and restrictive if the average DU
was negative.

The Rate of Amino Acid Replacement
We calculate the rate of leaving the resident amino
acid at a site h as the sum of the transition rates (using
eq. 4) over all sequences that differ from the current sequence
by a single nucleotide and have a different amino acid at
site h.

Autocorrelated and Randomized Models
We developed two models, an autocorrelated and a random-
ized model, to examine the behavior of the metrics, MSLR and
MAMI, in the absence of any systematic trend for propensities
to increase or decrease. First, we sampled 10,000 window sizes
(i.e., residency times) from the empirical distribution observed
in the stability simulations. In the randomized model, we
randomly sampled propensity values from the empirical pro-
pensity distribution plotted in figure 3A over a given window
size. For the autocorrelated model, we sampled from the
empirical distribution in such a way as to ensure that the
propensities were autocorrelated to a similar extent as in the
stability simulations. Importantly, in both models, initial and
resident amino acid propensities were sampled from the
same distribution and therefore no systematic increase (or
decrease) in propensity is expected. Then, we estimated MSLR

and MAMI for each window. The estimated percentages of
positive and negative shifts based on each measure are
reported in table 1. The algorithm used to generate the auto-
correlated data (and a proof that the marginal empirical dis-
tribution of propensities matched the empirical distribution)
are provided in the supplementary text, Supplementary
Material online.
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