
Article

Computationally designed proteins mimic antibody
immune evasion in viral evolution

Graphical abstract

Highlights

• Developed EVE-Vax, a computational method for designing

antigens

• Designed and tested 83 poly-mutant SARS-CoV-2 spike

proteins

• EVE-Vax designs foreshadowed immune escape observed in

natural pandemic variants

• EVE-Vax designs offer an approach for proactive vaccine and

therapeutic evaluation

Authors

Noor Youssef, Sarah Gurev,

Fadi Ghantous, ..., Jeremy Luban,

Michael S. Seaman, Debora S. Marks

Correspondence

lemieux@broadinstitute.org (J.E.L.),

jeremy.luban@umassmed.edu (J.L.),

mseaman@bidmc.harvard.edu (M.S.S.),

debbie@hms.harvard.edu (D.S.M.)

In brief

Rapid viral evolution challenges the

efficacy of vaccines and other medical

interventions. Our ability to evaluate

interventions is currently limited to

assessments against past or circulating

variants. Youssef et al. developed EVE-

Vax, a computational method for

designing poly-mutant proteins that

foreshadow immune evasion seen in

naturally evolving viral variants. Their

findings offer an approach for proactive

vaccine and therapeutic evaluations.

Youssef et al., 2025, Immunity 58, 1–11

June 10, 2025 © 2025 The Authors. Published by Elsevier Inc.

https://doi.org/10.1016/j.immuni.2025.04.015 ll

http://creativecommons.org/licenses/by/4.0/
mailto:lemieux@broadinstitute.org
mailto:jeremy.luban@umassmed.edu
mailto:mseaman@bidmc.harvard.edu
mailto:debbie@hms.harvard.edu
https://doi.org/10.1016/j.immuni.2025.04.015


Article

Computationally designed proteins mimic
antibody immune evasion in viral evolution

Noor Youssef,1,2 Sarah Gurev,1,2,3 Fadi Ghantous,4 Kelly P. Brock,1,2,14 Javier A. Jaimes,5 Nicole N. Thadani,1,2,15

Ann Dauphin,5 Amy C. Sherman,6 Leonid Yurkovetskiy,5 Daria Soto,5 Ralph Estanboulieh,1 Ben Kotzen,2,7 Pascal Notin,1,2

Aaron W. Kollasch,1,2 Alexander A. Cohen,8 Sandra E. Dross,9,10 Jesse Erasmus,11 Deborah H. Fuller,9,10

Pamela J. Bjorkman,8 Jacob E. Lemieux,2,7,12,* Jeremy Luban,2,5,12,13,* Michael S. Seaman,4,* and Debora S. Marks1,2,16,*
1Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
2Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA
3Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
4Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
5Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
6Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
7Massachusetts General Hospital, Boston, MA 02114, USA
8Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
9Department of Microbiology, University of Washington, Seattle, WA 98195, USA
10National Primate Research Center, Seattle, WA 98109, USA
11HDT Bio, Seattle, WA 98109, USA
12Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
13Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
14Present address: Kernal Biologics, Cambridge, MA 02142, USA
15Present address: Apriori Bio, Boston, MA 02142, USA
16Lead contact

*Correspondence: lemieux@broadinstitute.org (J.E.L.), jeremy.luban@umassmed.edu (J.L.), mseaman@bidmc.harvard.edu (M.S.S.),

debbie@hms.harvard.edu (D.S.M.)

https://doi.org/10.1016/j.immuni.2025.04.015

SUMMARY

Recurrent waves of viral infection necessitate vaccines and therapeutics that remain effective against

emerging viruses. Our ability to evaluate interventions is currently limited to assessments against past or

circulating variants, which likely differ in their immune escape potential compared with future variants. To

address this, we developed EVE-Vax, a computational method for designing antigens that foreshadow im-

mune escape observed in future viral variants. We designed 83 SARS-CoV-2 spike proteins that transduced

ACE2-positive cells and displayed neutralization resistance comparable to variants that emerged up to

12 months later in the COVID-19 pandemic. Designed spikes foretold antibody escape from B.1-BA.4/5 biva-

lent booster sera seen in later variants. The designed constructs also highlighted the increased neutralization

breadth elicited by nanoparticle-based, compared with mRNA-based, boosters in non-human primates. Our

approach offers targeted panels of synthetic proteins that map the immune landscape for early vaccine and

therapeutic evaluation against future viral strains.

INTRODUCTION

The emergence of viral variants that evade protective immunity

induced by prior infections, vaccines, and therapeutics is a chal-

lenge for the control of viral spread. This is exemplified by recur-

rent breakthrough infections observed with SARS-CoV-2 and

influenza. Although SARS-CoV-2 vaccines and therapeutics

have mitigated the severity of COVID-19, their efficacy has

been progressively undermined by the evolution of new variants.

For instance, the U.S. food and drug adminstration (FDA) emer-

gency use approval for the majority of monoclonal antibody ther-

apies has been revoked based on their loss of efficacy against

emerging variants of concern (VOCs).1 Similarly, first-generation

vaccines and boosters exhibit reduced protection against more

recent variants,2,3 necessitating annual updates to vaccine for-

mulations encoding the latest VOC circulating at the time of vac-

cine approval. The selected immunogen strain often differs from

the dominant variant at the time the vaccine is administered,4

leading to lower neutralizing antibody titers.5 These limitations

highlight the need for strategies that enable proactive, rather

than reactive, responses to viral evolution.

Current preclinical evaluations of vaccine and therapeutic effi-

cacy focus primarily on neutralization potency against previous or

circulating viral strains or against related viruses, e.g., SARS-like
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betacoronaviruses (sarbecoviruses).6–11 However, neutralizing

antibodies that are broadly protective across sarbecoviruses or

against circulating SARS-CoV-2 strains do not guarantee protec-

tion against emerging variants.12 Such evaluations therefore do

not address the question of how effectively interventions will pro-

tect against future viral evolution. By contrast, predictive frame-

works that anticipate immune-evasive mutations could enable

the design of viral proteins to proactively assess the breadth

and potency of vaccine-elicited and therapeutic antibodies.

Both experimental and computational methods have identified

future escape mutations from monoclonal antibodies and poly-

clonal sera.2,3,6,11,13–30 Experimental approaches often utilize

deep mutational scanning (DMS) to measure the effect of muta-

tions on neutralization by patient antibodies or sera. However,

DMS is typically limited to a subdomain of the antigen, measures

the impact of single amino acid mutations or a limited number of

combinations of mutations, and relies on patient sera that may

not be available early in an outbreak.2,3,6,11,13–29 Computational

models offer a promising alternative because they bypass these

limitations, could be generalizable across viral families, and may

be available prior to a viral outbreak. For example, EVEscape, a

computational deep learning model, accurately predicted im-

mune-evading mutations across SARS-CoV-2, influenza, HIV,

and Lassa virus.30 However, although experimental approaches

have been used to generate antigens with novel combinations of

mutations that evade neutralization, it has yet to be shown that

computational methods can similarly generate functional anti-

gens that foreshadow immune escape.

In this work, we address this gap by computationally gener-

ating and experimentally testing SARS-CoV-2 spike proteins

with novel combinations of mutations that are representative of

future antigenic evolution using the EVE-Vax design pipeline.

We generated 83 multi-mutant full-length spike constructs

across 5 VOC backgrounds (B.1, BA.4/5, BA.2.12.1, BA.2.75,

and XBB), which were engineered as single-cycle infection pseu-

dotypes. We assessed neutralization susceptibility against poly-

clonal immune sera from individuals with diverse exposure his-

tories throughout the COVID-19 pandemic. EVE-Vax-designed

spikes replicated immune-escape profiles observed in emerging

VOCs demonstrating its potential for mapping the immune land-

scape and guiding the evaluation and design of medical inter-

ventions that are robust to viral evolution.

RESULTS

A limitation in current vaccine and therapeutic evaluation ap-

proaches is that elicited protection is assessed against previous

or currently circulating variants of a virus, which does not neces-

sarily reflect efficacy against future viral evolution.25 To address

this challenge, we developed EVE-Vax, a computational pipeline

for generating panels of antigenically diverse proteins, enabling

the proactive evaluation of the breadth and future efficacy of

vaccines and therapeutics.

EVE-Vax uses the EVEscape30 framework to score the proba-

bility of antibody escape by combining 3 biologically relevant

constraints: (1) impact on fitness, (2) accessibility to antibodies,

and (3) disruption potential on antibody binding. Briefly, EVE-Vax

first combines high-scoring single mutants to evaluate all

possible double mutants, which are then further combined to

generate multi-mutant full-length spike constructs (Figures 1A

and S1; STAR Methods).

We designed 83 multi-mutant spike proteins on 5 different

VOC backgrounds: B.1 (wild type variant with D614G mutation),

BA.4/5, BA.2.12.1, BA.2.75, and XBB (Figures 1B and S1;

Table S1). Constructs contained up to 10 novel combinations

of mutations relative to the background VOC and up to 46 muta-

tions relative to the ancestral B.1 strain (Table S2). In total, 37

unique mutations, across 30 positions, were introduced in

different combinations and on different spike backgrounds

(Figure 1C). Most mutations were located in primary antigenic

regions despite no explicit inclusion of this constraint in the

EVE-Vax pipeline—17 (57%) of the mutated residues were in

the receptor binding domain (RBD) and 12 (40%) were in the

N-terminal domain (NTD).

Computationally designed multi-mutant spike proteins

retain infectivity in vitro

Generating multi-mutant proteins is challenging as functionality

often decreases with increasing mutational load. For example,

in experiments that measured RBD expression using error-

prone PCR libraries,31 ∼47% of all single mutations were ex-

pressed in contrast to less than 2% of those with 8 or more mu-

tations (Figure 2A). The reduction in functional sequences with

increasing mutational depth is generally observed across viral

(Lassa glycoprotein complex, GPC32) and non-viral (Clytia gre-

garia green fluorescent protein, GFP33) proteins (Figure 2A).

Furthermore, full spike proteins containing combinations of

commonly observed pandemic mutations, rather than intro-

ducing mutations at random using error-prone PCR, resulted

in less than 30% of proteins with 8 or more mutations maintain-

ing infectivity.29

Among the 83 designed constructs, 90% (75/83) were infec-

tious using replication-incompetent lentiviral-based pseudovi-

ruses in single-round biosafety-level-2 infection assays34

(Figures 2A, 2B, and S2; Table S3). The 10% of our designs

that were not infectious may be explained post hoc by two ob-

servations: (1) 4 of the 8 non-infectious designs contained a

triplet of mutations (L452R, F490R, and Q493S) that were closer

in the three-dimensional structure than any triplets seen in the

pandemic (Figure S2), and (2) the remaining 4 constructs were

designed using a model trained exclusively on pre-pandemic se-

quences and included a mutation (R403T) that likely disrupted

ACE2 binding.35 Together, these results highlight that the 90%

success rate observed in our computationally designed proteins

exceeds the expected rates for randomly introduced mutations

or combinations of individually non-deleterious mutations and

provide insights for refining the EVE-Vax design algorithm.

Spikes designed on early SARS-CoV-2 variants exhibit

neutralization resistance similar to subsequent variants

To evaluate the relevance of the EVE-Vax-designed spike pro-

teins as proxies for future viral variation, we performed pseu-

dovirus neutralization assays using nine panels of human

polyclonal serum pools representing diverse SARS-CoV-2 expo-

sure histories: convalescent sera from unvaccinated individuals

infected with (1) B.1 or (2) Delta infections; (3) recipients of two

primary doses of mRNA vaccines (mRNA-1273 or BNT162b2);

(4) recipients of three doses of an mRNA vaccine; (5) vaccinated
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individuals boosted with BA.4/5 bivalent mRNA vaccines; and

vaccinated patients who experienced breakthrough infections

(BTIs) with (6) Delta, (7) BA.1, (8) BA.2.12.1, or (9) BA.4/5 variants

(Figure 2C; Table S4). Neutralization assays were conducted on

pseudoviruses expressing 66 of the designed spike constructs,

20 SARS-CoV-2 variants (B.1, alpha, beta, delta, gamma,

BA.1, BA.2, BA.2.12.1, BA.2.75, BA.4/5, BQ.1, BQ.1.1, XBB,

XBB.1, XBB.1.5, CH.1.1, EG.5, HV.1, BA.2.86, and JN.1), and

the SARS-CoV-1 spike protein (Figure 2D; Table S4).

To characterize the degree of immune evasion observed

throughout the pandemic, we compared the half-maximal

neutralizing antibody titers (ID50) for each variant relative to the

parent variant from which it evolved (Figure 2E). As expected,

most variants were less susceptible to neutralization (had higher

antibody escape) compared with the parental variant that pre-

ceded it, with the exception of BQ.1.1, XBB.1, and XBB.1.5 var-

iants, which retained similar titers to their parent variants, BQ.1,

XBB, and XBB.1, respectively (p > 0.2, Wilcoxon rank-sum test).

The XBB (7.2-fold, p < 0.01, Wilcoxon rank-sum test) and CH.1.1

(14.2-fold, p < 0.01, Wilcoxon rank-sum test) variants displayed

the highest neutralization resistance relative to their parent

variant BA.2.75. On average, emerging variants exhibited a

3.9-fold reduction in geometric mean ID50 titers relative to their

parent variant and a range from 0.67 to 14.2 (gray region,

Figure 2E). Variants with higher antibody escape generally ex-

hibited reduced infectivity compared with their parent variants

(Figure 2B).

Pseudoviruses expressing designed spikes had comparable

neutralization titers as SARS-CoV-2 variants that evolved

throughout the pandemic. On average, EVE-vax-designed

spikes had a 1.9-fold reduction (range of 0.5 to 5.31) in geomet-

ric mean ID50 titer compared with their relative parent variant

(Figure 2E). More specifically, designs on specific backgrounds

had similar neutralization resistance as SARS-CoV-2 variants

evolved from those same backgrounds. For instance, the B.1-

4a-designed construct (B.1 + K147N + S494R + F490R +

R683N) had a 3.9-fold reduction in geometric mean ID50 titer,

exceeding the neutralization resistance of Alpha, Delta, and

Gamma (1.5-, 1.7-, and 2.0-fold reduction relative to B.1,

respectively) and comparable to Beta (4.8-fold reduction rela-

tive to B.1). Similarly, the BA.4/5-2a construct (BA.4/5 +

R346T + S494R) exhibited a 1.9-fold reduction in geometric

mean ID50 titers relative to BA.4/5, comparable to BQ.1 (2.4-

fold reduction). The BA.2.75-4c design (BA.2.75 + G339D +

L452R + Q493R + K529L) showed a 5.3-fold reduction in geo-

metric mean ID50 titer relative to BA.2.75, below the relative

neutralization resistance of XBB (7.2-fold). Neutralization pro-

files of EVE-vax designed constructs on the XBB background

remain consistent with the most recent SARS-CoV-2 variants

(JN.1.7.1, XDV, KQ.1, KP.1.1, KP.2, KP.1.1.1, KP.3, KP.3.1.1,

and LB.1), which emerged nearly two years after the designs

(Figure S3). Together, these results demonstrate that EVE-

Vax designed constructs exhibit a similar antibody escape ca-

pacity as variants that have naturally evolved under immune
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Figure 1. Computationally designed spike proteins allow for a proactive assessment of vaccines and therapeutics

(A) Schematic overview of EVE-Vax for designing antigenic proteins. Single mutants within the top 1% of highest-predicted escape scores were combined to

generate all possible double mutants. Double mutants were scored and further combined to create multi-mutant constructs. Designed constructs were sub-

sequently evaluated for infectivity and neutralization sensitivity using pseudotyped virus assays. Parts of the figure were created with BioRender.

(B) Cladogram depicting VOCs and computationally designed constructs (red triangles). Branch lengths are proportional to the temporal order of variant

emergence.

(C) Mutations across the 83 designed spike constructs mapped onto a representative 3D structure (PDB: 7BNN). Coloring indicates the frequency with which a

given residue was mutated across all designed constructs. See also Figure S1 and Tables S1 and S2.
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pressure and can therefore serve as useful proxies for future

SARS-CoV-2 evolution.

Designed variants foreshadow antigenic evolution

To investigate whether EVE-Vax designed constructs recapitu-

late the antigenic evolution observed during the pandemic, we

constructed antigenic maps where the distance between any

pair of variants reflects the similarity in their neutralization pro-

files across diverse serum pools (Figures 3A and S3). Constructs

designed on earlier variants exhibited an antigenic resemblance

to variants that emerged later in the pandemic (Figure 3A). The

BA.2.12.1-5a designed construct mimics the neutralizability of

later pandemic variant BA.2.75 with both variants mutating res-

idue K147 (N in the design, E in the later variant). The functional

impact of K147 mutations can be seen for the NTD antibody

S2X303, whose epitope partially overlaps the NTD antigenic

supersite36 (Figure 3B). XBB designs that contained L452R

(XBB-8a,9a,9b,10a,10b) or S494R (XBB-1a) closely matched
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Figure 2. EVE-Vax-designed constructs demonstrate neutralization escape comparable to VOCs

(A) Proportion of viable sequences across mutational depths. EVE-Vax-designed constructs exhibit higher viability compared with sequences generated by error-

prone PCR within the SARS-CoV-2 RBD (assayed for expression31), the Lassa glycoprotein complex (GPC) (assayed for cell entry),32 the Clytia gregaria green

fluorescent protein (GFP, assayed for fluorescence activity33), or from combinations of frequently observed pandemic mutations in spike (assayed for infec-

tivity29).

(B) Relationship between infectivity and neutralization. EVE-Vax-designed constructs and VOCs with higher escape from sera typically showed reduced

infectivity relative to their parent variant.

(C) Summary of 9 serum panels used for neutralization assays. Panels were from individuals who were convalescent (Conv.), vaccinated, boosted, or experienced

breakthrough infection (BTI). A total of 23 serum pools were created, each pooling samples from 5 individuals.

(D) Neutralizing ID50 titers for VOCs and designed constructs across 9 serum panels. Reported are the geometric mean titers across serum pools within a panel.

Gray boxes indicate variants that were not tested in that serum panel. EVE-Vax constructs are highlighted in red text.

(E) Fold change in neutralizing ID50 titers relative to the parent variant. Points represent the geometric mean fold change for each serum panel, with lines indicating

the overall geometric mean across all 9 panels. The gray band represents the range of neutralization sensitivity observed among VOCs. See also Figure S2 and

Tables S3 and S4.
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the neutralization profile of HV.1, which also contained L452R,

with notable escape from BA.1 BTI sera compared with other

serum panels (Table S4). The impacts of these mutations can

be seen in RBD class 2 antibody P2B-2F6,37 where mutation

to an arginine of either S494 or L452 (both contacting I103 on

the antibody) results in escape2 (Figure 3C). These observations

align with the hypothesis that later Omicron subvariants evolved

L452R to enhance immune evasion following BA.1 infection.3

These trends were consistent across other rounds of design:

constructs designed on BA.2.75 were antigenically similar to

the XBB lineages that emerged nine months later, constructs de-

signed on the XBB variant exhibited antigenic responses akin to

the CH.1.1 and HV.1 variants that emerged three and 12 months

later, constructs based on BA.4/5 anticipated BQ.1.1, and de-

signs on B.1 presaged the alpha and gamma variants

(Figure 3A, shaded area). These findings underscore the capa-

bility of EVE-Vax designs to recapitulate antigenic profiles akin

to those of future variants using only data available at the time

of VOC emergence.

Evaluating neutralizing antibody responses elicited by

mRNA vaccines

To demonstrate the utility of our approach in the proactive evalu-

ation of vaccine efficacy, we retrospectively used the designed

constructs to evaluate the B.1-BA.4/5 bivalent booster vaccine.

Considering variants circulating in the four months preceding

the bivalent booster campaign (BA.2.75, BQ.1, BQ.1.1, and

XBB), the geometric mean ID50 titers were 1,931 for serum panels

representative of bivalent boosting (four shots; Figure 4A;

Table S1 and S4). The high titers are indicative of adequate pro-

tection against these prior variants. However, constructs de-

signed on BA.2.75 and XBB demonstrated a range of antibody

escape, with ID50 titers ranging from 193 to 4,029. The broad

range of titers, specifically the low titers, were reflective of the

escape potential of variants that evolved post booster vaccine im-

plementation—the subsequent variants, XBB.1, XBB.1.5, and

CH.1.1, had ID50 titers of 538, 587, and 308, respectively

(Figure 4A). Moreover, 8 XBB-based designs displayed lower

ID50 titers than CH.1.1, demonstrating the potential for further

escape from neutralizing antibodies elicited by bivalent booster

vaccines. These results highlight the utility of EVE-Vax designs

for early vaccine evaluation.

Evaluating neutralizing antibody responses elicited by

nanoparticle vaccines

Cohen et al.8,9 recently developed two RBD nanoparticle vac-

cines: mosaic-8b nanoparticles displaying RBDs from eight

different sarbecoviruses and a homotypic nanoparticle display-

ing the RBD from the Beta SARS-CoV-2 variant. Both nanopar-

ticle vaccines elicited neutralizing antibodies against SARS-

CoV-2 variants when tested in mouse and non-human primate

(NHP) animal models.8,9 Fourteen NHPs were primed with a

mixture of nucleotide vaccines and boosted with either a bivalent

mRNA vaccine (n = 4), a mosaic-8b nanoparticle (n = 5), or a

homotypic nanoparticle (n = 5) vaccine.38 To evaluate the neutral-

izing potential of these booster vaccines against future SARS-

CoV-2 evolution, we examined differences in neutralization activ-

ity across five SARS-CoV-2 variants (B.1, BA.2.12.1, BA.2.75,

BA.4/5, and XBB), as well as four designed spike constructs

(BA.5-2a, BA.2.12.1-2d, BA.2.75-4c, and XBB-10b; Table S4).
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Figure 3. EVE-Vax-designed constructs foreshadow future SARS-CoV-2 immune-escape evolution

(A) Antigenic cartography depicts a two-dimensional representation of the antigenic distance based on neutralization by 23 serum pools. Each grid box cor-

responds to a 2-fold change in neutralizing ID50 titers. Variants (circles) are colored according to their month of emergence since the onset of the pandemic.

Designed constructs (triangles) on earlier variants foreshadow the antigenicity of later pandemic variants, as indicated by proximity in the antigenic map.

(B) Designed construct BA.2.12.1-5a mimics the neutralizability of later pandemic variant BA.2.75. Both contain a mutation at K147 (N in the design, E in the later

variant). The impact of K147 mutations can be seen for NTD antibody S2X303, with interactions to N65, D50, and Y31 on the antibody (PDB: 7SOF).

(C) Many XBB designs containing L452R (XBB-8a,9a,9b,10a,10b) or S494R (XBB-1a) closely resemble the neutralization profile of the later HV.1 variant, which

also harbors L452R. Arginine mutations in either S494 or L452 result in escape from RBD class 2 antibody P2B-2F62,37 (PDB: 8DCC). See also Figure S3 and

Table S4.
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Sera from bivalent mRNA-boosted NHPs demonstrated the

lowest neutralization titers against the tested SARS-CoV-2 vari-

ants (mean titer of 678) compared with sera from NHPs, which

were boosted with the homotypic nanoparticle (1,843, P =

0.166 Wilcoxon rank-sum test) or the mosaic-8b nanoparticle

(2,199, p = 0.060, Wilcoxon rank-sum test, Figure 4B). Neutral-

izing titers were consistently lower against the EVE-Vax de-

signed constructs compared with the SARS-CoV-2 variants,

with on average a 2.3, 4.0, and 2.3-fold decrease in the bivalent

mRNA, homotypic, and mosaic-8b sera, respectively (Figure

4C). Although the neutralization titers among the natural SARS-

CoV-2 variants were comparable between the mosaic-8b and

homotypic-boosted NHPs, the designed constructs showcase

the improved performance of the mosaic-8b nanoparticle

booster vaccine (Figure 4D). Neutralizing titers against the de-

signed constructs BA.2.12.1-2d, BA.2.75-4c, BA.5-2a, and

XBB-10b were 3.3, 2.0, 1.5, and 2.0-fold higher in sera from

mosaic-8b boosted NHPs compared with homotypic boosted

animals. Overall, the results suggest that nanoparticle booster

vaccines lead to higher neutralizing titers against future SARS-

CoV-2 variants as compared with bivalent mRNA booster vac-

cines and that the mosaic-8b elicits more cross-reactive anti-

bodies compared with the homotypic nanoparticle.

EVE-Vax designs have comparable escape to assay-

derived designs

Lastly, we compared the ability of computational and experi-

mental methods to forecast pandemic mutations and generate

constructs that foreshadow immune escape. Prior work demon-

strated that EVEscape, trained on data available prior to the

onset of the COVID-19 pandemic, more accurately predicted

escape mutations observed during the pandemic than the

earliest mutational scanning experiments.30 To date, 33% of

escape mutations predicted by pre-pandemic EVEscape (muta-

tions in the top 5% of scores) were observed in over 1,000 viral

strains during the pandemic. In contrast, only 15% of escape

mutations predicted by early mutational scanning experiments

met this threshold (Figures 5A and S4; Table S5). Updating the

computational models with SARS-CoV-2 sequences available

through July 2022 (models developed in this study) increased

the proportion of observed escape mutations to ∼40% (85 of

the 218 computationally predicted escape mutations appeared

in more than 1,000 sequences). By comparison, updating exper-

imental datasets to reflect contemporary immune pressures by

including escape mutations from 20 high-throughput experi-

mental studies2,3,6,11,13–29 resulted in∼15% of escape mutations

being observed during the pandemic (64 of the 420 experimen-

tally predicted escape mutations).

We compare the ability of EVE-Vax constructs versus ‘‘assay-

derived’’ constructs to foreshadow immune escape (assay-

derived constructs refer to previously published constructs that

were developed using experimental methods). We compared

our B.1 designs to PMS1-1 and PMSD4 from Schmidt et al.,26

which included 13 mutations in each construct selected based

on plasma neutralization sensitivity and distribution across the

spike protein (Figure S5). For BA.2.75 and BA.4/5 backgrounds,

we compared our constructs to designs from Cao et al.,22 where

RBD mutations were selected based on criteria derived from

deep mutational scans assaying neutralization resistance against

over three thousand BA.2-neutralizing antibodies (Figures S5).

We compare our XBB designs to the closest available experi-

mental designs from Yisimayi et al.,23 who designed XBB.1.5

RBD constructs using the same criteria as Cao et al.22 but

measured neutralizing activity across 1,816 RBD-targeting anti-

bodies (Figure S5).

Both computational and experimental approaches identified

positions that were frequently mutated during the pandemic

at greater rates than random selection of mutations in
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Figure 4. Evaluating the breadth and potency of vaccines using designed spike constructs

(A) Neutralizing ID50 titers against sera from individuals who received a BA.4/5 bivalent booster vaccination after 3 doses of an mRNA vaccine. Lines indicate

geometric mean across variants or designs. The BA.4/5 bivalent booster vaccine was evaluated on its ability to neutralize variants circulating in the 4 months prior

to the creation of the booster vaccines (BA.2.75, BQ.1, BQ.1.1, and XBB). Designed spike constructs on the background of variants circulating prior to the vaccine

foreshadowed the antibody escape observed against variants that emerged following the bivalent booster approval (XBB.1, XBB.1.5, and CH.1.1). Statistical

significance was assessed using the Wilcoxon rank-sum test.

(B) Neutralizing potency of sera collected from non-human primates primed with a mixture of nucleic acid vaccines and boosted with either a bivalent mRNA (n =

4), a homotypic nanoparticle (n = 5), or a mosaic 8b nanoparticle (n = 5). Bar charts represent the geometric mean ID50 titers for each variant.

(C) Bar charts represent the geometric mean ID50 titers for each designed construct. Designed constructs highlight the improvement of protection from antibodies

elicited by the mosaic-8b booster compared with the homotypic nanoparticle.

(D) Neutralization sensitivity of a given variant by the mosaic-8b boost sera relative to the homotypic boost sera. Higher values indicate the mosaic-8b vaccine

better neutralizes a given variant. Lines connect designed constructs to their parent variants. See also Table S4.
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immunodominant regions of spike (Figures 5B and S5). Addition-

ally, EVE-Vax constructs had comparable escape from poly-

clonal sera to assay-derived constructs while incorporating

fewer mutations per spike protein (p > 0.05, Mann-Whitney

rank-sum test, Bonferroni correction; Figures 5C and 5D).

Furthermore, the majority of the escape mutations included in

assay-derived designs were high scoring in the computational

model scores (Figure S5), highlighting that these mutations could

have been identified computationally if the threshold used for

identifying escape mutations was lowered in the EVE-Vax pipe-

line. Conversely, the mutations in our EVE-Vax constructs would

not have been identified from the experimental data (Figure S5).

These findings indicate that EVE-Vax provides an alternative to

high-throughput experimental methods for designing antigenic

proteins that mimic immune-escape evolution.

DISCUSSION

Driven by the need for vaccines and therapeutics that maintain

efficacy against viral evolution, hundreds of vaccine candidates

are currently undergoing preclinical or clinical evaluations.39

However, it remains unclear the extent to which these candidate

vaccines will effectively combat future viral variants. To date,

neutralization potential of SARS-CoV-2 booster vaccines,40
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Figure 5. EVE-Vax constructs have comparable polyclonal escape to constructs designed using pandemic sera and antibodies

(A) Proportion of escape mutations seen in over 1,000 strains in Global Initiative on Sharing All Influenza Data (GISAID), as predicted by EVEscape (with and

without SARS-CoV-2 sequences), high-throughput DMS experiments across 20 studies (Table S5), or randomly selected RBD mutations. Predicted escape

mutations were defined as nonsynonymous, single-nucleotide RBD mutations in the top 5% of escape scores for computational and experimental methods (top

1% and 10% in Figure S4). Points indicate updates to the set of escape mutations based on the availability of a more recent DMS data (blue) or model (red, which

includes SARS-CoV-2 sequences available prior to that date). Predictions for the full spike protein (computational) and for each independent experiment and

model are provided in Figure S4.

(B) Proportion of designed sites mutated at different frequencies in GISAID, categorized by computational or experimental design rounds or by spike regions.

Designed mutations are enriched at high-frequency sites compared with immunodominant spike regions (e.g., RBD or NTD). Spike regions analyzed: all (1–

1,273), S1 (1–686), NTD (13–305), RBD (319–541), and RBM (437–508).

(C) Fold change in ID50 titers of assay-derived constructs, EVE-Vax constructs, or descendant VOC relative to the respective parent variant. The construct with the

highest neutralization escape was selected for each round of computational and assay-derived designs. Individual points represent fold change for matched sera

pool between computational and experimental studies; bars indicate geometric mean fold reduction.

(D) Table of selected EVE-Vax construct, assay-derived construct, or descendant VOC for each parent variant. For experimental and computational methods, the

construct with the highest average escape per round is reported. RBD, receptor-binding domain; NTD, N-terminal domain; RBM, receptor-binding motif. See also

Figures S4 and S5 and Table S5.
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pan-variant therapeutics,6,41 and other antivirals42 have been

evaluated against previous or contemporary SARS-CoV-2 vari-

ants or against distantly related sarbecoviruses.8,9 Such ap-

proaches are limited to retrospectively testing efficacy against

emerging pandemic variants or throughout evolution, which do

not guarantee effectiveness against future variants.12 We pre-

sent a vaccine and therapeutic evaluation approach that ad-

dresses these issues by designing panels of diverse antigens

that can be used, in safe non-replicative pseudotype assays,

to assess the breadth and potency of candidate vaccines and

therapeutics to neutralize future viral variants.

We highlight the utility of this approach through analyses of the

bivalent mRNA booster vaccine and pan-sarbecovirus nanopar-

ticle-based vaccines. We demonstrate that the immune escape

observed by SARS-CoV-2 variants that emerged following the

bivalent booster vaccination campaign, such as XBB and

CH.1.1, could have been anticipated at the time that booster

vaccines were implemented. Additionally, EVE-Vax-designed

constructs demonstrated the potential for further immune

escape, which has since been realized by JN.1 and other vari-

ants in the BA.2.86 lineage that continue to emerge. Alterna-

tively, nanoparticle-based vaccines offer a promising vaccine

modality that has the potential to elicit broadly neutralizing anti-

bodies. The conceptual premise posits that vaccines designed

to counteract sarbecoviruses, with broad taxonomic distances,

would elicit antibodies targeting conserved regions, thus

decreasing the likelihood of escape under immune pressures.

Supporting the advantage of the mosaic nanoparticle vaccine,

we find higher neutralizing titers against our EVE-Vax constructs

compared with the homotypic nanoparticle or mRNA vaccines.

Taken together, these findings suggest that, when evaluating

vaccines against a panel of designed variants, the range of

neutralizing titers, especially the lowest observed values, may

signal future escape potential.

A key advantage of the computational approach is the ability

to predict escape mutations independent of antibody or sera

availability, enabling proactive design efforts before the emer-

gence of novel variants or spillover events. Furthermore, the

approach is generalizable across viral families and is likely to

be of relevance for mapping the immune landscape of key anti-

genic proteins and developing countermeasures against highly

diverse or poorly characterized viruses. For example, address-

ing the high diversity of Lassa virus strains presents a signifi-

cant challenge for vaccine development. EVE-Vax can be

used to generate panels of diverse strains to assess the

cross-protection potential of vaccines currently in clinical and

preclinical trials.43 By leveraging non-replicative pseudovirus

assays, even biosafety-level 4 pathogens can be evaluated un-

der safer conditions, consistent with established practices.11,24

In addition to generating panels of synthetic proteins for vac-

cine evaluation, evidence presented in this paper suggests

that the EVE-Vax pipeline could more directly inform vaccine

design by identifying epitopes likely to escape prior vaccine-

induced or therapeutic antibodies.

Limitations of the study

The extent to which the method presented here is generalizable

to other viral antigens will depend on many factors—not least,

whether the available evolutionary sequence record is sufficient

for a computational approach to learn functional constraints.

Heuristics for determining the number and diversity of se-

quences needed to accurately predicti functional constraints

have been explored to a limited extent.44 More quantitative

methods are needed, especially those tailored to viruses, as

many viruses with a high pandemic and spillover risk remain

understudied and undersequenced. Although the promise of

protein language models, trained on a broad set of proteins,

may mitigate some of these limitations, their applicability for

designing de novo proteins for vaccine evaluation and design re-

mains to be explored. Another limitation is the focus in this study

on antibody neutralization. Although important for initial clinical

efficacy,45 other components of the immune response, such as

T-cell-mediated immunity, are often essential for long-term pro-

tection. Lastly, forecasting future variants, whether experimental

or computational, could, in theory, be misused; however, these

risks can be minimized by the responsible development and

sharing of such information.46
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7. Li, D., Martinez, D.R., Schäfer, A., Chen, H., Barr, M., Sutherland, L.L., Lee,

E., Parks, R., Mielke, D., Edwards, W., et al. (2022). Breadth of SARS-CoV-

2 neutralization and protection induced by a nanoparticle vaccine. Nat.

Commun. 13, 6309. https://doi.org/10.1038/s41467-022-33985-4.

8. Cohen, A.A., van Doremalen, N., Greaney, A.J., Andersen, H., Sharma, A.,

Starr, T.N., Keeffe, J.R., Fan, C., Schulz, J.E., Gnanapragasam, P.N.P.,

et al. (2022). Mosaic RBD nanoparticles protect against challenge by

diverse sarbecoviruses in animal models. Science 377, eabq0839.

https://doi.org/10.1126/science.abq0839.

9. Cohen, A.A., Gnanapragasam, P.N.P., Lee, Y.E., Hoffman, P.R., Ou, S.,

Kakutani, L.M., Keeffe, J.R., Wu, H.-J., Howarth, M., West, A.P., et al.

(2021). Mosaic nanoparticles elicit cross-reactive immune responses to

zoonotic coronaviruses in mice. Science 371, 735–741. https://doi.org/

10.1126/science.abf6840.

10. Baum, A., Fulton, B.O., Wloga, E., Copin, R., Pascal, K.E., Russo, V.,

Giordano, S., Lanza, K., Negron, N., Ni, M., et al. (2020). Antibody cocktail

to SARS-CoV-2 spike protein prevents rapid mutational escape seen with

individual antibodies. Science 369, 1014–1018. https://doi.org/10.1126/

science.abd0831.

11. Schmidt, F., Weisblum, Y., Muecksch, F., Hoffmann, H.-H., Michailidis, E.,

Lorenzi, J.C.C., Mendoza, P., Rutkowska, M., Bednarski, E., Gaebler, C.,

et al. (2020). Measuring SARS-CoV-2 neutralizing antibody activity using

pseudotyped and chimeric viruses. J. Exp. Med. 217, e20201181.

https://doi.org/10.1084/jem.20201181.

12. Jian, F., Wec, A.Z., Feng, L., Yu, Y., Wang, L., Wang, P., Yu, L., Wang, J.,

Hou, J., Berrueta, D.M., et al. (2024). A generalized framework to identify

SARS-CoV-2 broadly neutralizing antibodies. Preprint at bioRxiv. https://

doi.org/10.1101/2024.04.16.589454.

13. Greaney, A.J., Starr, T.N., Gilchuk, P., Zost, S.J., Binshtein, E., Loes, A.N.,

Hilton, S.K., Huddleston, J., Eguia, R., Crawford, K.H.D., et al. (2021).

Complete Mapping of Mutations to the SARS-CoV-2 spike Receptor-

Binding Domain that Escape Antibody Recognition. Cell Host Microbe

29, 44–57.e9. https://doi.org/10.1016/j.chom.2020.11.007.

14. Starr, T.N., Greaney, A.J., Addetia, A., Hannon, W.W., Choudhary, M.C.,

Dingens, A.S., Li, J.Z., and Bloom, J.D. (2021). Prospective mapping of

viral mutations that escape antibodies used to treat COVID-19. Science

371, 850–854. https://doi.org/10.1126/science.abf9302.

15. Greaney, A.J., Loes, A.N., Crawford, K.H.D., Starr, T.N., Malone, K.D.,

Chu, H.Y., and Bloom, J.D. (2021). Comprehensive mapping of mutations

in the SARS-CoV-2 receptor-binding domain that affect recognition by

polyclonal human plasma antibodies. Cell Host Microbe 29, 463–476.e6.

https://doi.org/10.1016/j.chom.2021.02.003.

16. Dong, J., Zost, S.J., Greaney, A.J., Starr, T.N., Dingens, A.S., Chen, E.C.,

Chen, R.E., Case, J.B., Sutton, R.E., Gilchuk, P., et al. (2021). Genetic and

structural basis for SARS-CoV-2 variant neutralization by a two-antibody

cocktail. Nat. Microbiol. 6, 1233–1244. https://doi.org/10.1038/s41564-

021-00972-2.

17. Starr, T.N., Greaney, A.J., Dingens, A.S., and Bloom, J.D. (2021).

Complete map of SARS-CoV-2 RBD mutations that escape the mono-

clonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Rep.

Med. 2, 100255. https://doi.org/10.1016/j.xcrm.2021.100255.

18. Greaney, A.J., Starr, T.N., Barnes, C.O., Weisblum, Y., Schmidt, F.,

Caskey, M., Gaebler, C., Cho, A., Agudelo, M., Finkin, S., et al. (2021).

Mapping mutations to the SARS-CoV-2 RBD that escape binding by

different classes of antibodies. Nat. Commun. 12, 4196. https://doi.org/

10.1038/s41467-021-24435-8.

ll
OPEN ACCESSArticle

Immunity 58, 1–11, June 10, 2025 9

Please cite this article in press as: Youssef et al., Computationally designed proteins mimic antibody immune evasion in viral evolution, Immunity

(2025), https://doi.org/10.1016/j.immuni.2025.04.015

https://doi.org/10.1016/j.immuni.2025.04.015
https://doi.org/10.1016/j.immuni.2025.04.015
https://doi.org/10.7326/M22-1286
https://doi.org/10.1038/s41586-021-04385-3
https://doi.org/10.1038/s41586-021-04385-3
https://doi.org/10.1038/s41586-022-04980-y
https://doi.org/10.1038/s41586-022-04980-y
https://doi.org/10.1038/s41591-022-02092-8
https://doi.org/10.1038/s41591-022-02092-8
https://doi.org/10.1016/S1473-3099(24)00298-6
https://doi.org/10.1073/pnas.2221713120
https://doi.org/10.1038/s41467-022-33985-4
https://doi.org/10.1126/science.abq0839
https://doi.org/10.1126/science.abf6840
https://doi.org/10.1126/science.abf6840
https://doi.org/10.1126/science.abd0831
https://doi.org/10.1126/science.abd0831
https://doi.org/10.1084/jem.20201181
https://doi.org/10.1101/2024.04.16.589454
https://doi.org/10.1101/2024.04.16.589454
https://doi.org/10.1016/j.chom.2020.11.007
https://doi.org/10.1126/science.abf9302
https://doi.org/10.1016/j.chom.2021.02.003
https://doi.org/10.1038/s41564-021-00972-2
https://doi.org/10.1038/s41564-021-00972-2
https://doi.org/10.1016/j.xcrm.2021.100255
https://doi.org/10.1038/s41467-021-24435-8
https://doi.org/10.1038/s41467-021-24435-8


19. Starr, T.N., Czudnochowski, N., Liu, Z., Zatta, F., Park, Y.-J., Addetia, A.,

Pinto, D., Beltramello, M., Hernandez, P., Greaney, A.J., et al. (2021).

SARS-CoV-2 RBD antibodies that maximize breadth and resistance to

escape. Nature 597, 97–102. https://doi.org/10.1038/s41586-021-

03807-6.

20. Greaney, A.J., Loes, A.N., Gentles, L.E., Crawford, K.H.D., Starr, T.N.,

Malone, K.D., Chu, H.Y., and Bloom, J.D. (2021). Antibodies elicited by

mRNA-1273 vaccination bind more broadly to the receptor binding

domain than do those from SARS-CoV-2 infection. Sci. Transl. Med. 13,

eabi9915. https://doi.org/10.1126/scitranslmed.abi9915.

21. Greaney, A.J., Starr, T.N., Eguia, R.T., Loes, A.N., Khan, K., Karim, F.,

Cele, S., Bowen, J.E., Logue, J.K., Corti, D., et al. (2022). A SARS-CoV-

2 variant elicits an antibody response with a shifted immunodominance hi-

erarchy. PLoS Pathog. 18, e1010248. https://doi.org/10.1371/journal.

ppat.1010248.

22. Cao, Y., Jian, F., Wang, J., Yu, Y., Song, W., Yisimayi, A., Wang, J., An, R.,

Chen, X., Zhang, N., et al. (2023). Imprinted SARS-CoV-2 humoral immu-

nity induces convergent Omicron RBD evolution. Nature 614, 521–529.

https://doi.org/10.1038/s41586-022-05644-7.

23. Yisimayi, A., Song, W., Wang, J., Jian, F., Yu, Y., Chen, X., Xu, Y., Yang, S.,

Niu, X., Xiao, T., et al. (2024). Repeated Omicron exposures override

ancestral SARS-CoV-2 immune imprinting. Nature 625, 148–156.

https://doi.org/10.1038/s41586-023-06753-7.

24. Dadonaite, B., Brown, J., McMahon, T.E., Farrell, A.G., Figgins, M.D.,

Asarnow, D., Stewart, C., Lee, J., Logue, J., Bedford, T., et al. (2024).

Spike deep mutational scanning helps predict success of SARS-CoV-2

clades. Nature 631, 617–626. https://doi.org/10.1038/s41586-024-

07636-1.

25. Jian, F., Wang, J., Yisimayi, A., Song, W., Xu, Y., Chen, X., Niu, X., Yang,

S., Yu, Y., Wang, P., et al. (2025). Evolving antibody response to SARS-

CoV-2 antigenic shift from XBB to JN.1. Nature 637, 921–929. https://

doi.org/10.1038/s41586-024-08315-x.

26. Schmidt, F., Weisblum, Y., Rutkowska, M., Poston, D., DaSilva, J., Zhang,

F., Bednarski, E., Cho, A., Schaefer-Babajew, D.J., Gaebler, C., et al.

(2021). High genetic barrier to SARS-CoV-2 polyclonal neutralizing anti-

body escape. Nature 600, 512–516. https://doi.org/10.1038/s41586-

021-04005-0.

27. Greaney, A.J., Eguia, R.T., Starr, T.N., Khan, K., Franko, N., Logue, J.K.,

Lord, S.M., Speake, C., Chu, H.Y., Sigal, A., et al. (2022). The SARS-

CoV-2 Delta variant induces an antibody response largely focused on

class 1 and 2 antibody epitopes. PLoS Pathog. 18, e1010592. https://

doi.org/10.1371/journal.ppat.1010592.

28. Starr, T.N., Greaney, A.J., Stewart, C.M., Walls, A.C., Hannon, W.W.,

Veesler, D., and Bloom, J.D. (2022). Deep mutational scans for ACE2 bind-

ing, RBD expression, and antibody escape in the SARS-CoV-2 Omicron

BA.1 and BA.2 receptor-binding domains. PLoS Pathog. 18, e1010951.

https://doi.org/10.1371/journal.ppat.1010951.

29. Dadonaite, B., Crawford, K.H.D., Radford, C.E., Farrell, A.G., Yu, T.C.,

Hannon, W.W., Zhou, P., Andrabi, R., Burton, D.R., Liu, L., et al. (2023).

A pseudovirus system enables deep mutational scanning of the full

SARS-CoV-2 spike. Cell 186, 1263–1278.e20. https://doi.org/10.1016/j.

cell.2023.02.001.

30. Thadani, N.N., Gurev, S., Notin, P., Youssef, N., Rollins, N.J., Ritter, D.,

Sander, C., Gal, Y., and Marks, D.S. (2023). Learning from prepandemic

data to forecast viral escape. Nature 622, 818–825. https://doi.org/10.

1038/s41586-023-06617-0.

31. Starr, T.N., Greaney, A.J., Hilton, S.K., Ellis, D., Crawford, K.H.D., Dingens,

A.S., Navarro, M.J., Bowen, J.E., Tortorici, M.A., Walls, A.C., et al. (2020).

Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain

Reveals Constraints on Folding and ACE2 Binding. Cell 182, 1295–1310.

e20. https://doi.org/10.1016/j.cell.2020.08.012.

32. Carr, C.R., Crawford, K.H.D., Murphy, M., Galloway, J.G., Haddox, H.K.,

Matsen, F.A., 4th, Andersen, K.G., King, N.P., and Bloom, J.D. (2024).

Deep mutational scanning reveals functional constraints and antibody-

escape potential of Lassa virus glycoprotein complex. Immunity 57,

2061–2076.e11. https://doi.org/10.1016/j.immuni.2024.06.013.

33. Gonzalez Somermeyer, L., Fleiss, A., Mishin, A.S., Bozhanova, N.G.,

Igolkina, A.A., Meiler, J., Alaball Pujol, M.-E., Putintseva, E.V., Sarkisyan,

K.S., and Kondrashov, F.A. (2022). Heterogeneity of the GFP fitness land-

scape and data-driven protein design. eLife 11, e75842. https://doi.org/

10.7554/eLife.75842.

34. Yurkovetskiy, L., Wang, X., Pascal, K.E., Tomkins-Tinch, C., Nyalile, T.P.,

Wang, Y., Baum, A., Diehl, W.E., Dauphin, A., Carbone, C., et al. (2020).

Structural and Functional Analysis of the D614G SARS-CoV-2 spike

Protein Variant. Cell 183, 739–751.e8. https://doi.org/10.1016/j.cell.

2020.09.032.

35. Zech, F., Schniertshauer, D., Jung, C., Herrmann, A., Cordsmeier, A., Xie,

Q., Nchioua, R., Prelli Bozzo, C., Volcic, M., Koepke, L., et al. (2021). Spike

residue 403 affects binding of coronavirus spikes to human ACE2. Nat.

Commun. 12, 6855. https://doi.org/10.1038/s41467-021-27180-0.

36. McCallum, M., Walls, A.C., Sprouse, K.R., Bowen, J.E., Rosen, L.E., Dang,

H.V., De Marco, A., Franko, N., Tilles, S.W., Logue, J., et al. (2021).

Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-

2 variants. Science 374, 1621–1626. https://doi.org/10.1126/science.

abl8506.

37. Ju, B., Zhang, Q., Ge, J., Wang, R., Sun, J., Ge, X., Yu, J., Shan, S., Zhou,

B., Song, S., et al. (2020). Human neutralizing antibodies elicited by SARS-

CoV-2 infection. Nature 584, 115–119. https://doi.org/10.1038/s41586-

020-2380-z.

38. Cohen, A.A., Keeffe, J.R., Schiepers, A., Dross, S.E., Greaney, A.J.,

Rorick, A.V., Gao, H., Gnanapragasam, P.N.P., Fan, C., West, A.P.,

et al. (2024). Mosaic sarbecovirus nanoparticles elicit cross-reactive re-

sponses in pre-vaccinated animals. Cell 187, 5554–5571. https://doi.

org/10.1016/j.cell.2024.07.052.

39. WHO. COVID-19 vaccine tracker and landscape. https://www.who.int/

publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.

40. Chalkias, S., Harper, C., Vrbicky, K., Walsh, S.R., Essink, B., Brosz, A.,

McGhee, N., Tomassini, J.E., Chen, X., Chang, Y., et al. (2022). A

Bivalent Omicron-Containing Booster Vaccine against Covid-19.

N. Engl. J. Med. 387, 1279–1291. https://doi.org/10.1056/NEJMoa

2208343.

41. Tan, C.-W., Chia, W.-N., Young, B.E., Zhu, F., Lim, B.-L., Sia, W.-R.,

Thein, T.-L., Chen, M.I.-C., Leo, Y.-S., Lye, D.C., et al. (2021). Pan-

Sarbecovirus Neutralizing Antibodies in BNT162b2-Immunized SARS-

CoV-1 Survivors. N. Engl. J. Med. 385, 1401–1406. https://doi.org/10.

1056/NEJMoa2108453.

42. Pitts, J., Li, J., Perry, J.K., Du Pont, V., Riola, N., Rodriguez, L., Lu, X.,

Kurhade, C., Xie, X., Camus, G., et al. (2022). Remdesivir and GS-

441524 Retain Antiviral Activity against Delta, Omicron, and Other

Emergent SARS-CoV-2 Variants. Antimicrob. Agents Chemother. 66,

e0022222. https://doi.org/10.1128/aac.00222-22.

43. Sulis, G., Peebles, A., and Basta, N.E. (2023). Lassa fever vaccine candi-

dates: A scoping review of vaccine clinical trials. Trop. Med. Int. Health 28,

420–431. https://doi.org/10.1111/tmi.13876.

44. Notin, P., Kollasch, A.W., Ritter, D., Van Niekerk, L., Paul, S., Spinner, H.,

Rollins, N.J., Shaw, A., Orenbuch, R., Weitzman, R., et al. (2023).

ProteinGym: Large-Scale Benchmarks for Protein Design and Fitness

Prediction.. Preprint at bioRxiv.

45. Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A.,

Fairhurst, J., Hunt, C., Strein, J., Berrebi, A., Sisk, J.M., et al. (2015).

Pre- and postexposure efficacy of fully human antibodies against spike

protein in a novel humanized mouse model of MERS-CoV infection.

Proc. Natl. Acad. Sci. USA 112, 8738–8743. https://doi.org/10.1073/

pnas.1510830112.

46. Carter, S.R., Curtis, S., Emerson, C., Gray, J., Haydon, I.C., Hebbeler, A.,

Qureshi, C., Randolph, N., Rives, A., and Stuart, L. (2024). Responsible AI

x Biodesign. Responsible AI x Biodesign. https://responsiblebiodesign.ai.

47. Boucau, J., Marino, C., Regan, J., Uddin, R., Choudhary, M.C., Flynn, J.P.,

Chen, G., Stuckwisch, A.M., Mathews, J., Liew, M.Y., et al. (2022).

ll
OPEN ACCESS Article

10 Immunity 58, 1–11, June 10, 2025

Please cite this article in press as: Youssef et al., Computationally designed proteins mimic antibody immune evasion in viral evolution, Immunity

(2025), https://doi.org/10.1016/j.immuni.2025.04.015

https://doi.org/10.1038/s41586-021-03807-6
https://doi.org/10.1038/s41586-021-03807-6
https://doi.org/10.1126/scitranslmed.abi9915
https://doi.org/10.1371/journal.ppat.1010248
https://doi.org/10.1371/journal.ppat.1010248
https://doi.org/10.1038/s41586-022-05644-7
https://doi.org/10.1038/s41586-023-06753-7
https://doi.org/10.1038/s41586-024-07636-1
https://doi.org/10.1038/s41586-024-07636-1
https://doi.org/10.1038/s41586-024-08315-x
https://doi.org/10.1038/s41586-024-08315-x
https://doi.org/10.1038/s41586-021-04005-0
https://doi.org/10.1038/s41586-021-04005-0
https://doi.org/10.1371/journal.ppat.1010592
https://doi.org/10.1371/journal.ppat.1010592
https://doi.org/10.1371/journal.ppat.1010951
https://doi.org/10.1016/j.cell.2023.02.001
https://doi.org/10.1016/j.cell.2023.02.001
https://doi.org/10.1038/s41586-023-06617-0
https://doi.org/10.1038/s41586-023-06617-0
https://doi.org/10.1016/j.cell.2020.08.012
https://doi.org/10.1016/j.immuni.2024.06.013
https://doi.org/10.7554/eLife.75842
https://doi.org/10.7554/eLife.75842
https://doi.org/10.1016/j.cell.2020.09.032
https://doi.org/10.1016/j.cell.2020.09.032
https://doi.org/10.1038/s41467-021-27180-0
https://doi.org/10.1126/science.abl8506
https://doi.org/10.1126/science.abl8506
https://doi.org/10.1038/s41586-020-2380-z
https://doi.org/10.1038/s41586-020-2380-z
https://doi.org/10.1016/j.cell.2024.07.052
https://doi.org/10.1016/j.cell.2024.07.052
https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
https://doi.org/10.1056/NEJMoa2208343
https://doi.org/10.1056/NEJMoa2208343
https://doi.org/10.1056/NEJMoa2108453
https://doi.org/10.1056/NEJMoa2108453
https://doi.org/10.1128/aac.00222-22
https://doi.org/10.1111/tmi.13876
http://refhub.elsevier.com/S1074-7613(25)00178-5/sref44
http://refhub.elsevier.com/S1074-7613(25)00178-5/sref44
http://refhub.elsevier.com/S1074-7613(25)00178-5/sref44
http://refhub.elsevier.com/S1074-7613(25)00178-5/sref44
https://doi.org/10.1073/pnas.1510830112
https://doi.org/10.1073/pnas.1510830112
https://responsiblebiodesign.ai


Duration of Shedding of Culturable Virus in SARS-CoV-2 Omicron (BA.1)

Infection. N. Engl. J. Med. 387, 275–277. https://doi.org/10.1056/

NEJMc2202092.

48. Seaman, M.S., Siedner, M.J., Boucau, J., Lavine, C.L., Ghantous, F., Liew,

M.Y., Mathews, J.I., Singh, A., Marino, C., Regan, J., et al. (2022). Vaccine

breakthrough infection leads to distinct profiles of neutralizing antibody re-

sponses by SARS-CoV-2 variant. JCI Insight 7, e159944. https://doi.org/

10.1172/jci.insight.159944.

49. Li, Y., Choudhary, M.C., Regan, J., Boucau, J., Nathan, A., Speidel, T.,

Liew, M.Y., Edelstein, G.E., Kawano, Y., Uddin, R., et al. (2024). SARS-

CoV-2 viral clearance and evolution varies by type and severity of immu-

nodeficiency. Sci. Transl. Med. 16, eadk1599. https://doi.org/10.1126/sci-

translmed.adk1599.

50. Frazer, J., Notin, P., Dias, M., Gomez, A., Min, J.K., Brock, K., Gal, Y., and

Marks, D.S. (2021). Disease variant prediction with deep generative

models of evolutionary data. Nature 599, 91–95. https://doi.org/10.1038/

s41586-021-04043-8.

51. Wilks, S. (2024). Racmacs: Antigenic Cartography Macros. https://acorg.

github.io/Racmacs/.

52. Johnson, L.S., Eddy, S.R., and Portugaly, E. (2010). Hidden Markov model

speed heuristic and iterative HMM search procedure. BMC Bioinformatics

11, 431. https://doi.org/10.1186/1471-2105-11-431.

53. Mou, H., Quinlan, B.D., Peng, H., Liu, G., Guo, Y., Peng, S., Zhang, L.,

Davis-Gardner, M.E., Gardner, M.R., Crynen, G., et al. (2021). Mutations

derived from horseshoe bat ACE2 orthologs enhance ACE2-Fc neutraliza-

tion of SARS-CoV-2. PLoS Pathog. 17, e1009501. https://doi.org/10.

1371/journal.ppat.1009501.

54. Gangavarapu, K., Latif, A.A., Mullen, J.L., Alkuzweny, M., Hufbauer, E.,

Tsueng, G., Haag, E., Zeller, M., Aceves, C.M., Zaiets, K., et al. (2023).

Outbreak.info. Outbreak.info genomic reports: Scalable and dynamic sur-

veillance of SARS-CoV-2 variants and mutations. Nat. Methods 20,

512–522. https://doi.org/10.1038/s41592-023-01769-3.

55. Suzek, B.E., Huang, H., McGarvey, P., Mazumder, R., and Wu, C.H.

(2007). UniRef: comprehensive and non-redundant UniProt reference

clusters. Bioinformatics 23, 1282–1288. https://doi.org/10.1093/bioinfor-

matics/btm098.

56. Khare, S., Gurry, C., Freitas, L., Schultz, M.B., Bach, G., Diallo, A., Akite,

N., Ho, J., Lee, R.T., Yeo, W., et al. (2021). GISAID’s Role in Pandemic

Response. China CDC Wkly. 3, 1049–1051. https://doi.org/10.46234/

ccdcw2021.255.

57. Edgar, R.C. (2022). Muscle5: High-accuracy alignment ensembles enable

unbiased assessments of sequence homology and phylogeny. Nat.

Commun. 13, 6968. https://doi.org/10.1038/s41467-022-34630-w.

58. Eisenberg, D., Weiss, R.M., and Terwilliger, T.C. (1984). The hydrophobic

moment detects periodicity in protein hydrophobicity. Proc. Natl. Acad.

Sci. USA 81, 140–144. https://doi.org/10.1073/pnas.81.1.140.

59. Takebe, Y., Seiki, M., Fujisawa, J., Hoy, P., Yokota, K., Arai, K., Yoshida,

M., and Arai, N. (1988). SR alpha promoter: an efficient and versatile

mammalian cDNA expression system composed of the simian virus 40

early promoter and the R-U5 segment of human T-cell leukemia virus

type 1 long terminal repeat. Mol. Cell. Biol. 8, 466–472. https://doi.org/

10.1128/mcb.8.1.466-472.1988.

60. Ujike, M., Huang, C., Shirato, K., Makino, S., and Taguchi, F. (2016). The

contribution of the cytoplasmic retrieval signal of severe acute respiratory

syndrome coronavirus to intracellular accumulation of S proteins and

incorporation of S protein into virus-like particles. J. Gen. Virol. 97,

1853–1864. https://doi.org/10.1099/jgv.0.000494.

61. Lai, R.P.J., Yan, J., Heeney, J., McClure, M.O., Göttlinger, H., Luban, J.,
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Primary Vaccination

Serum blood donation. This paper. N/A

Human polyclonal sera - B.1 (Pfizer) Primary

Vaccination

Serum blood donation. This paper. N/A

Human polyclonal sera - B.1 (Moderna) Boost Serum blood donation. This paper. N/A

Human polyclonal sera - B.1 (Pfizer) Boost Serum blood donation. This paper. N/A

Human polyclonal sera - B.1 & BA.4/5 Bivalent

Boost

Serum blood donation. This paper. N/A

Human polyclonal sera - Delta Vaccine

Breakthrough Infection

Collected from patients47–49 N/A

Human polyclonal sera - BA.1 Vaccine

Breakthrough Infection

Collected from patients47–49 N/A

Human polyclonal sera - BA.2.12.1 Vaccine

Breakthrough Infection

Collected from patients47–49 N/A

Human polyclonal sera - BA.4/5 Vaccine

Breakthrough Infection

Collected from patients47–49 N/A

NHP polyclonal sera - bivalent mRNA Vaccine

Boost

Collected from NHP (Cohen et al.38) N/A

NHP polyclonal sera - mosaic-8b nanoparticle

Boost

Collected from NHP (Cohen et al.38) N/A

NHP polyclonal sera - homotypic nanoparticle

Boost

Collected from NHP (Cohen et al.38) N/A

Bacterial and virus strains

See Table S2 for 104 viral strains used This paper See Table S2 for addgene identifiers

Chemicals, peptides, and recombinant proteins

Filters, 0.45 μM Avantor Cat#76479-020

Critical commercial assays

RT Assay Yurkovetskiy et al.34 N/A

Steady-Glo Luciferase Assay System Promega Cat#E2550

Bright-Glo Luciferase Assay System Promega Cat#E2650

HIV pseudotyping assay Yurkovetskiy et al.34 N/A

Deposited data

SARS-CoV-2 Sequences GISAID49 N/A

Spike structures in open and closed

conformations

PDB PDB:6VXX; PDB:6VYB; PDB:7CAB;

PDB:7BNN

Raw and analyzed data This paper Tables S3 and S4 and https://github.com/

debbiemarkslab/Vax_design

Experimental models: Cell lines

HEK 293T cells with stably overexpressed

ACE2

Drs. Michael Farzan and Huihui Ma

(The Scripps Research Institute)

N/A

HEK 293T/17 cells ATCC Cat#CRL-11268

(Continued on next page)
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines

HEK293T cells (derived from HEK293 Homo sapiens, female, embryonic kidney cells) used here were obtained from the American

Type Culture Collection or ATCC (CRL-3216 for 293T or CRL-11268 for 293T/17). HEK293T cells with stably expressed human ACE2

were obtained from the same cell clone previously described by Mou et al.53 and were kindly provided by Drs. Michael Farzan and

Huihui Ma (The Scripps Research Institute). HEK293T cells were transduced with vesicular stomatitis virus (VSV) G protein-pseudo-

typed murine leukemia viruses to stably express the human ACE2 cell surface receptor protein. All cells were cultured in humidified

incubators with 5% CO2 at 37◦C, and monitored for mycoplasma contamination using the Mycoplasma Detection kit (Lonza LT07-

318), were cultured in DMEM supplemented with 10% heat-inactivated FBS, 1 mM sodium pyruvate, 20 mM GlutaMAX, 1 × MEM

non-essential amino acids, and 25 mM HEPES, pH 7.2. HEK293T cells with stably expression of the human angiotensin converting

enzyme 2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) (HEK293T-ACE2-TMPRSS2 cells) were developed by the

Luban laboratory.34

SARS-CoV-2 convalescent and vaccine human sera

We analyzed 115 serum samples collected from individuals who were either convalescent, vaccinated, boosted, or experienced

breakthrough infection (Table S4). Informed consent was obtained from participants in the Post-vaccination Viral Characteristics

Study (POSITIVES) study.47–49 Serum samples were acquired approximately 2-4 weeks after vaccination or convalescence. For pa-

tients experiencing breakthrough infection, whole genome sequencing was performed on a nasal swab collected at the time of diag-

nosis to confirm infecting SARS-CoV-2 variant.

In order to maximize the number of designed spike variant pseudoviruses that can be tested against the same immune serum

panels, a total of 23 serum pools were created by grouping 5 individual patient samples per pool. The pooled sera are representative

of the different populations that have existed throughout the pandemic: natural infection, primary vaccination, boosted, bivalent

boosted, and breakthrough infection. When sufficient samples were available, individual serum samples were pooled based on

neutralization titers resulting in low, medium, and high neutralization pools.

Sarbecovirus non-human primate vaccine sera

Fourteen NHPs (5-year-old male and female cynomolgus macaques of Mauritian origin) received four doses of DNA or repRNA

SARS-CoV-2 vaccines 64 and 30 weeks prior to boosting with either a BA.1 bivalent mRNA vaccine (n = 4), a mosaic-8b sarbecovirus

RBD nanoparticle (n = 5), or a homotypic sarbecovirus RBD nanoparticle (n = 5) vaccine.38 Samples were collected 2-weeks post

booster. The mixed immune history in these groups of pre-vaccinated NHPs is representative of a complex immune history in people

who have been vaccinated and/or infected multiple times.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

HEK293T cells with stably expressed

ACE2/TMPRSS2

Yurkovetskiy et al.34 N/A

HEK293T cells ATCC Cat#CRL-3216

Recombinant DNA

Plasmid: pDMJ2 This paper N/A

Plasmid: pCMV-R8.2 Dr. Barney Graham (NIH Vaccine

Research Center)

N/A

Plasmid: pHR’CMV-Luc Dr. Barney Graham (NIH Vaccine

Research Center)

N/A

Software and algorithms

EVE-Vax This paper https://github.com/

debbiemarkslab/Vax_design

EVEscape Thadani et al.30 https://github.com/OATML-

Markslab/EVEscape

EVE Frazer et al.50 https://github.com/OATML-

Markslab/EVE

Racmacs Wilks51 https://acorg.github.io/Racmacs/

Jackhmmer Johnson et al.52 http://hmmer.org/download.html
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METHOD DETAILS

Multiple Sequence Alignments for fitness models

We designed spike constructs on the backgrounds of five VOCs: the canonical wildtype SARS-CoV-2 spike protein (Uniprot ID:

P0DTC2) with D614G mutation (B.1), and the BA.4/5, BA.2.12.1, BA.2.75, and XBB spike sequences. We define the pandemic lin-

eages based on the list of mutations described in outbreak.info.54 For each round of construct design, we built multiple sequence

alignments for spike with both pre-pandemic sequences and pandemic spike sequences seen before the emergence of the variant

used as the background for the design.

To generate the pre-pandemic alignment, we used 5 iterations of the jackhmmer iterative HMM-based homology search alignment

tool,52 searching against the Uniref100 dataset55 and removed all sequences deposited after January 2020. To account for the

growing number of pandemic sequences, we included unique pandemic sequences seen more than 100 times in the Global Initiative

on Sharing All Influenza Data (GISAID) EpiCoV database (www.gisaid.org)56 at the time of emergence of the variant (Table S1). The

resulting pandemic sequences and evolutionary alignments were combined and aligned with super5,57 version 5.1. We remove se-

quences that are aligned to less than 50% of the query sequence and remove residue positions that contain more than 70% gap

characters. We down weighted redundant sequence clusters by assigning each protein sequence i a weight w (i) = 1= T, where

T is the number of sequences in the alignment within a given hamming distance cutoff of t (0.01).

For the B.1 variant, two models were trained to assess the impact of incorporating SARS-CoV-2 sequences. The first model was

trained exclusively on sequences available from pre-pandemic coronaviruses (n = 4,577 non-SARS-CoV-2 spike sequences;

Table S1). For comparison purposes, the second model was updated to include SARS-CoV-2 spike sequences seen prior to May

2022 (n = 5,868, with 1,291 sequences from SARS-CoV-2 which represented ∼9 independent sequences in model training due to

high similarity) and used for a much smaller design round (6 of the 21 B.1 designs were using this model). For all other variants, model

training included all SARS-CoV-2 spike sequences available up to the emergence of the respective variant (Tables S1). Due to the

high similarity across the SARS-CoV-2 sequences, they at most represented 1.4% of the training dataset by effective number of

weighted-redundant sequences.

EVE-Vax protein design algorithm

We use the EVEscape framework,30 which combines fitness, accessibility, and dissimilarity, to predict a mutant’s ability to escape

antibody recognition. For the fitness (f ) component we trained an EVE model,50 a Bayesian variational autoencoder (VAE) on the

multiple sequence alignments. We estimate the relative fitness of each sequence as the log likelihood ratio between a mutated

sequence and the wild type sequence. This ratio is itself approximated as the difference in Evidence Lower Bound (ELBO). We

estimate ELBO values using twenty thousand Monte Carlo samples of the latent space. For the dissimilarity (d) component, we

use both charge and hydrophobicity58 differences between each pair of amino acids and then assign each pair a dissimilarity value

equal to the sum of the standard-scaled differences. For the accessibility (a) component, we selected spike structures from the

RCSB Protein Data Bank (PDB) representative of both ‘‘open’’ and ‘‘closed’’ configurations (PDB IDs: 6VXX, 6VYB, 7CAB, and

7BNN). Using these structures, we calculated the weighted contact number (WCN) for each residue position i as

WCNi =
∑

j∕=i (r
− 2
ij ) where rij is the distance between the geometric centers of the side chain of the residues occupying sites i

and j. Each position is then assigned the minimum WCN across all structures. We use the negative WCN as a measure of residue

accessibility to antibodies.

For each mutation, we combined the fitness, accessibility, and dissimilarity scores using a temperature scaled logistic function to

get a single escape score for each individual mutation. The score of a mutation m is calculated as

EVEscape(m) = logistic
(
T − 1

f ∗ F m
f

)
∗ logistic

(
T − 1

a ∗ F m
a

)
∗ logistic

(
T − 1

d ∗ F m
d

)

where Ti is the temperature scaling and Fi is the standardized vector for factor i. We then take the log transform of the product. We

modified the temperature parameters compared to the values used previously30 by increasing the contribution of the fitness compo-

nent, Tf = 1;Ta = 8, and Td = 16: The modular design of this framework enhances model interpretability by allowing us to assess the

relative contributions of each of the three components to a mutation’s overall escape score (Figure S1).

We designed 83 constructs on the backgrounds of five different spike VOC sequences: B.1 (ancestral strain with D614G), BA.4/5,

BA.2.12.1, BA.2.75, and XBB. For each background variant we first scored all possible single amino acid substitutions to spike. Note

that we consider amino acid mutations involving any number of nucleotide changes rather than focusing on only single nucleotide

changes which are by far the most common (more than 99%) mutations seen in GISAID.56 To design constructs, we considered sin-

gle amino acid mutations in the top 1% of EVEscape score. We then generated and scored all possible double mutants. Lastly, we

combined highly fit double mutants and scored them to create higher order constructs.

Recombinant DNA sequence plasmid design

All recombinant DNA work was conducted according to protocols approved by the University of Massachusetts Chan Medical

School Institutional Biosafety Committee. We designed a pDMJ2 plasmid where spike expression is under the control of a cytomeg-

alovirus immediate early promoter (CMV-IE) fused to the human T lymphotropic virus type 1 (HTLV-1) 5′ UTR.59 Transcription termi-

nation is directed by a bovine growth hormone polyadenylation signal (bGH-PolyA). The pDMJ2 plasmid carries an origin of
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replication (ori) from ColE1 and an Ampicillin resistance gene. spike sequences were inserted between the XbaI and BamHI restriction

sites (Table S2; Figure S1).

An ancestral B.1 spike sequence was codon optimized by Twist Biosciences with a deletion of the terminal 18 amino acids to re-

move the endoplasmic reticulum retention signal.60 This sequence was used as the base sequence on which other constructs were

designed to minimize effects of nucleotide sequence on protein synthesis efficiency. Specifically, to generate spike sequences of

VOCs and designed constructs, we mutated individual codon positions to the most commonly used codon in human cells encoding

the mutant amino acid. We repeated this for all mutations in a given sequence. If a restriction site was introduced, the second most

common codon was used.

Infectivity assays with SARS-CoV-2 spike-pseudotyped lentiviral particles

All infectivity assays utilized replication-incompetent lentiviral pseudotypes and were conducted according to protocols approved by

the University of Massachusetts Chan Medical School Institutional Biosafety Committee. HIV-1-derived virions bearing a luciferase

reporter gene, and pseudotyped with a SARS-CoV-2 spike variant, were produced by transfection of HEK293T cells, as previously

reported.34 Each S protein expression plasmid was separately transfected into HEK293 cells with plasmids encoding HIV-1 structural

proteins and enzymes. Separate plasmids were transfected that encode RNAs with HIV-1 cis-acting signals for packaging and repli-

cation and either GFP or luciferase (Luc) reporter cassettes. Fresh media was added after spinfection and cells were incubated prior

to analysis. The supernatant from the transfected cells was collected 72 hours post-transfection and filtered (0.45 μM, Avantor™) to

remove cellular debris. For each condition tested, multiple virus stocks were produced, and each stock was tested in triplicate after

vector particle normalization by using reverse-transcriptase activity. Virion yield in each transfection supernatant was normalized us-

ing our in-house exogenous reverse transcriptase (RT) activity assay.34,61 As in Yurkovetskiy et al.,34 5 μL transfection supernatant

was mixed with 5 μL 0.25% Triton X-100, 50 mM KCl, 100 mM Tris-HCl pH 7.4, and 0.4 U/μL RiboLock RNase inhibitor, and then

diluted 1:100 in 5 mM (NH4)2SO4, 20 mM KCl, and 20 mM Tris-HCl pH 8.3. 10 μL of this was then added to a single-step, RT-

PCR assay with 35 nM MS2 RNA (IDT) as template, 500 nM of each primer (5′-TCCTGCTCAACTTCCTGTCGAG-3′ and 5′-CAC

AGGTCAAACCTCCTAGGAATG-3′), and 0.1 μL hot-start Taq DNA polymerase (Promega, Madison, WI) in 20 mM Tris-Cl pH 8.3,

5 mM (NH4)2SO4, 20 mM KCl, 5 mM MgCl2, 0.1 mg/mL BSA, 1/20,000 SYBR Green I (Invitrogen), and 200 μM dNTPs in total

20 μL reaction. The RT-PCR reaction was carried out in a Biorad CFX96 real-time PCR detection system with the following param-

eters: 42◦C for 20 minutes, 95◦C for 2 minutes, and 40 cycles [95◦C for 5 seconds, 60◦C for 5 seconds, 72◦C for 15 seconds, and

acquisition at 80◦C for 5 seconds].

Supernatant containing pseudovirions was then added to HEK293T cells that were previously transduced with puromycin- and

blasticidin-resistant lentivectors to stably express the human angiotensin converting enzyme 2 (ACE2) and the transmembrane serine

protease 2 (TMPRSS2),34 respectively (HEK293T-ACE2-TMPRSS2). 16 hours prior to transduction, HEK293T-ACE2-TMPRSS2 cells

were seeded in 96 well plates. HEK293T cells were plated at 7.5× 103 cells per well. Cells were incubated in virus-containing media

for 16 hours at 37◦C when fresh medium was added to cells and returned to incubation for another 56 hours.. Luciferase activity on

target cells was measured as an indication of transduction efficiency, using the Steady-Glo® Luciferase Assay System (Promega

Corporation) read on a Promega GloMax Discover machine. All plasmids were deposited to Addgene (Table S2). All experiments

were performed in triplicate. Sequences were considered non-functional if they had the same measured transduction (Relative Light

Units; RLU) as the negative control (pDMJ2 without spike inserted, <1 x 104 RLU).

Neutralization assays with SARS-CoV-2 spike-pseudotyped lentiviral particles

Neutralizing activity against SARS-CoV-2 pseudovirus was measured using a single-round infection assay in 293T/ACE2 target cells.

Pseudotyped virus particles were produced in 293T/17 cells (ATCC) by co-transfection of pDMJ2 plasmids encoding codon-opti-

mized SARS-CoV-2 spike variant, packaging plasmid pCMV R8.2, and luciferase reporter plasmid pHR’ CMV-Luc. Packaging

and luciferase plasmids were kindly provided by Dr. Barney Graham (NIH, Vaccine Research Center). The 293T cell line stably over-

expressing the human ACE2 cell surface receptor protein was kindly provided by Drs. Michael Farzan and Huihui Ma (The Scripps

Research Institute). For neutralization assays, serial dilutions of patient serum samples were performed in duplicate followed by addi-

tion of pseudovirus. Pooled serum samples from convalescent COVID-19 patients or pre-pandemic normal healthy serum (NHS)

were used as positive and negative controls, respectively. Plates were incubated for 1 hour at 37 C followed by addition of 293/

ACE2 target cells (1x104 /well). Wells containing cells and pseudovirus (without sample) or cells alone acted as positive and negative

infection controls, respectively. Assays were harvested on day 3 using Promega BrightGlo luciferase reagent and luminescence de-

tected with a Promega GloMax luminometer. Titers are reported as the dilution of serum that inhibited 50% or 80% virus infection

(ID50 and ID80 titers, respectively).

Analysis of proportion of viable sequences at different mutational depths

We used the raw data from four deep mutation scans (viral and non-viral) to quantify the likelihood of obtaining functional sequences

with multiple mutations compared to a wild type sequence. We analyzed the SARS-CoV-2 RBD data from Starr et al.,31 the full spike

SARS-CoV-2 data from Dadonaite et al.,29 the Lassa glycoprotein complex (GPC) data from Carr et al.,32 and the Clytia gregaria green

fluorescent protein (GFP) data from Somermeyer et al.33

In the RBD dataset, mutations were introduced using error-prone PCR resulting in 135,386 unique mutant RBDs with up to 11

amino acid mutations. The expression of each sequence was measured as the change in mean fluorescence intensity, Δlog(MFI),
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relative to the unmutated SARS-CoV-2 RBD. We used sequences containing synonymous mutations (labeled viable) and sequences

with premature stop codons (labeled nonviable) to train a logistic regression for classifying missense variants as either viable or nonvi-

able. The fitted model had an intercept of 4.66 and a coefficient of 1.39. The decision threshold estimated for expression scores was

-1.56 Δlog(MFI) with variants having expression values less than this boundary classified as non-viable, and variants with expression

scores greater than the boundary classified as viable. When analysing this same data, Greaney et al.15 used an expression threshold

of -1 Δlog(MFI) to classify variants as nonviable since that was the expression deficit for mutations to core disulfide residues. More

recently, Greaney et al.13 used an expression threshold of -1.5 Δlog(MFI). Our estimated decision threshold of -1.56 Δlog(MFI) is

therefore in-line with previous biologically-informed cutoffs.

We repeated the logistic regression analysis described above on the other three datasets. In the full spike dataset from Dadonaite

et al.,29 only mutations seen in the pandemic were introduced to the full spike Delta variant in higher-order combinations. The dataset

included 191,418 unique variants containing up to 38 mutations. For each variant, a functional score was estimated based on its rela-

tive frequency in the spike- versus VSV-G-pseudotyped libraries. The fitted model had an intercept of 6.11 and a coefficient of 3.91.

The decision threshold was estimated to be a functional score of -3.34, with variants having values lower than this cutoff classified as

non-viable and variants with higher values classified as viable.

In the Lassa GPC data from Carr et al.,32 the libraries were created using error-prone PCR. The dataset included 66,793 unique

variants containing up to 34 mutations. For each variant, a functional score was estimated based on cell entry measurements in

293T cells. The fitted model had an intercept of 2.5 and a coefficient of 0.8. The decision threshold was estimated to be a functional

score of -3.15, with variants having values lower than this cutoff classified as non-viable and variants with higher values classified as

viable.

In the Clytia gregaria GFP dataset from Somermeyer et al.,33 the libraries were created using error-prone PCR. The dataset

included 26,165 unique variants containing up to 230 mutations. For each variant, a functional score was estimated based on the

log of the green fluorescence intensity. The fitted model had an intercept of -46.6 and a coefficient of 10.9. The decision threshold

was estimated to be a functional score of 4.25, with variants having values lower than this cutoff classified as non-viable and variants

with higher values classified as viable.

Analysis of escape mutation frequencies in the public database

We analyzed experimental data from 20 high-throughput deep mutational scanning studies (Table S5) that measured escape muta-

tions against monoclonal antibodies (mAbs) or sera.2,3,6,13–25,27–29,62 For each study, mutations were assigned an escape score,

calculated as either the maximum or mean score across conditions (antibodies or sera). Escape mutations were defined as nonsy-

nonymous mutations within one nucleotide of the wildtype amino acid and ranked in the top 5% of escape scores for each study. The

proportion of escape mutations observed more than 1,000 times throughout the pandemic (using GISAID56 downloaded on Dec 19

2024) is reported. Proportions for each study independently and with different thresholds (top 1%, 5% and 10%) are shown in

Figure S4.

To estimate the cumulative proportion of escape mutations across studies (Figure 5A), escape mutations were initially defined

based on the earliest available experimental data. When subsequent studies became available, we updated the set of escape mu-

tations to include any additional mutations identified by the most recent study which were not in the prior set of escape mutations.

This iterative approach accounts for variability between studies conducted in different laboratories, at different times, and under

differing experimental conditions, while maintaining the utility of earlier studies performed on previous variants of concern. The

same protocol was applied to define escape mutations predicted by computational models.

Comparison to assay-derived constructs designed using high throughput experiments

We compare the EVE-Vax designed constructs to multi-mutant constructs designed from large-scale experimental studies of escape

from polyclonal sera or thousands of monoclonal antibodies.11,22,63 For B.1 designs, we compare against designs from Schmidt

et al.,11 with matched sera: High Titer Convalescent Wildtype (ours: High convalescent WT titer pool (n=5), theirs: RU27 (n=27)),

Convalescent Wildtype (ours: Convalescent WT (n=15), theirs: Ran21, (n=21)), and Vaccine (ours: Primary Vaccination (n=25), theirs:

Vac14 (n =14); Figure S5). Their designs included mutations chosen from passaging a (rVSV)/SARS-CoV-2 chimeric virus in the pres-

ence of plasmas for up to six passages, and mutations were chosen based on their effects on plasma neutralization sensitivity and

distribution throughout the spike protein. The constructs with the highest average fold reduction were B.1-8a (ours) and PSM1-1

(theirs).

For BA.5, we compare against the 8 BA.5 RBD designs generated by Cao et al.,22 with matched sera: Boost (ours: Boost (n=25),

theirs: CoronaVac 3 doses (n= 40)), BA.1 BTI (ours: BA.1 BTI (n=15), theirs: BA.1 BTI post 3 doses of CoronaVac, (n= 50)), BA.2.12.1

BTI (ours: BA.2.12.1 BTI (n=5), theirs: BA.2 BTI post 3 doses of CoronaVac (n=50)) and BA.5 BTI (ours: BA.5 BTI (n=5), theirs: BA.5 BTI

post 3 doses of CoronaVac, (n=36); Figure S5). Their designs included mutations chosen from measuring high-throughput scans of

human-ACE2 binding affinity, RBD expression and neutralizing activity across 3,051 BA.2-neutralizing antibodies from varied im-

mune backgrounds, as well as codon constraints on each residue. The constructs with the highest average fold reduction were

BA.5-5a (ours) and BA.5-S8 (theirs).

For BA.2.75, we compare against the 8 BA.2.75 RBD designs generate by Cao et al.,22 with matched sera: Boost (ours: Boost

(n=25), theirs: CoronaVac 3 doses (n= 40)), BA.1 BTI (ours: BA.1 BTI (n=15), theirs: BA.1 BTI post 3 doses of CoronaVac, (n= 50)),

BA.2.12.1 BTI (ours: BA.2.12.1 BTI (n=5), theirs: BA.2 BTI post 3 doses of CoronaVac (n=50)) and BA.5 BTI (ours: BA.5 BTI (n=5),
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theirs: BA.5 BTI post 3 doses of CoronaVac, (n=36); Figure S5). Their designs included mutations chosen from measuring high-

throughput scans of human-ACE2 binding affinity, RBD expression and neutralizing activity across 3,051 BA.2-neutralizing

antibodies from varied immune backgrounds, as well as codon constraints on each residue. The constructs with the highest average

fold reduction were BA.2.75-4c (ours) and BA.2.75-S7 (theirs).

For XBB, we compare against the 7 XBB.1.5 RBD designs generated by Yisimayi et al.,63 with matched sera: BA.1 BTI (ours: BA.1

BTI (ours: BA.1 BTI (n=15), theirs: BA.1 BTI prior to BA.5/BF.7 reinfection (n=26)), BA.2.12.1 BTI (ours: BA.2.12.1 BTI (n=5), theirs: BA.2

BTI prior to BA.5/BF.7 reinfection, (n=19)), and BA.5 BTI (ours: BA.5 BTI (n=5), theirs: Reinfection with BA.5 or BF.7 after BA.1 or BA.2

infection without vaccination (n=12); Figure S5). Their designs included mutations chosen from measuring high-throughput scans of

human-ACE2 binding affinity, RBD expression and neutralizing activity across 1,816 SARS-CoV-2 RBD-targeting antibodies from

varied immune backgrounds, as well as codon constraints on each residue. The constructs with the highest average fold reduction

were XBB-9a relative to XBB (ours) and XBB.1.5-S5 relative to XBB.1.5 (theirs).

QUANTIFICATION AND STATISTICAL ANALYSIS

We use the Wilcoxon signed rank test from SciPy for comparing differences in neutralization, with the p-value indicated and fold

reduction in geometric mean ID50 titers shown. For XBB designs the Delta convalescent and primary vaccine sera pool were not

included since the serum pools were depleted at the time these constructs were made. The statistical test in this case only consid-

ered the remaining sera.

For antigenic cartography, we use Racmacs51 to perform multidimensional scaling (MDS) on our titration data measuring the

neutralization sensitivity of all VOCs and designs for each serum pool. MDS is used to create a 2-dimensional representation of

the pairwise antigenic distance between each VOC or design, as dictated by how each is neutralized by the different sera pools.

MDS pairwise distances are consistent, which can be seen across pairs of variant-variant, variant-design, and design-design

(Figure S3). This allows us to visualize the trajectory of evolution in antigenic space.
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